Analysis of kinematic linked interpolation methods for Reissner-Mindlin plate problems

The approximation to the solution of Reissner-Mindlin plate problem is considered in the framework of finite element techniques. A general strategy, involving a linking operator between rotations and vertical displacements, is analyzed. An abstract convergence result is provided. Examples of elements falling into this framework are presented and shown to be stable and locking-free. Numerical tests detail the performances of the elements. EMAIL:: lovadina@ing.unitn.it

[1]  Carlo Lovadina,et al.  A New Class of Mixed Finite Element Methods for Reissner--Mindlin Plates , 1996 .

[2]  Ricardo G. Durán,et al.  ON THE CONVERGENCE OF A TRIANGULAR MIXED FINITE ELEMENT METHOD FOR REISSNER–MINDLIN PLATES , 1996 .

[3]  W. Gibbs,et al.  Finite element methods , 2017, Graduate Studies in Mathematics.

[4]  D. Arnold,et al.  A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .

[5]  J. Pitkäranta Analysis of some low-order finite element schemes for Mindlin-Reissner and Kirchhoff plates , 1988 .

[6]  M. Fortin,et al.  ERROR ANALYSIS OF MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES , 1991 .

[7]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[8]  Dominique Chapelle,et al.  An optimal low-order locking-free finite element method for Reissner-Mindlin plates , 1998 .

[9]  Carlo Lovadina,et al.  Analysis of a mixed finite element method for the Reissner-Mindlin plate problems , 1998 .

[10]  C. Chinosi,et al.  Numerical analysis of some mixed finite element methods for Reissner-Mindlin plates , 1995 .

[11]  Robert L. Taylor,et al.  Linked interpolation for Reissner‐Mindlin plate elements: Part II—A simple triangle , 1993 .

[12]  Alf Samuelsson,et al.  Linked interpolation for Reissner-Mindlin plate elements: Part I—A simple quadrilateral , 1993 .

[13]  R.A.F. Martins,et al.  A simple and efficient triangular finite element for plate bending , 1997 .

[14]  H. Saunders Book Reviews : The Finite Element Method (Revised): O.C. Zienkiewicz McGraw-Hill Book Co., New York, New York , 1980 .

[15]  K. Bathe Finite Element Procedures , 1995 .

[16]  Mikko Lyly,et al.  On the connection between some linear triangular Reissner-Mindlin plate bending elements , 2000, Numerische Mathematik.

[17]  K. Bathe,et al.  Mixed-interpolated elements for Reissner–Mindlin plates , 1989 .

[18]  Xu Zhongnian A simple and efficient triangular finite element for plate bending , 1986 .

[19]  Ferdinando Auricchio,et al.  PARTIAL SELECTIVE REDUCED INTEGRATION SCHEMES AND KINEMATICALLY LINKED INTERPOLATIONS FOR PLATE BENDING PROBLEMS , 1999 .

[20]  Ferdinando Auricchio,et al.  A shear deformable plate element with an exact thin limit , 1994 .

[21]  Xu Zhongnian,et al.  A thick–thin triangular plate element , 1992 .

[22]  Ferdinando Auricchio,et al.  A triangular thick plate finite element with an exact thin limit , 1995 .

[23]  Numerische,et al.  Analysis of Some Low-Order Finite Element Schemes for Mindlin-Reissner and Kirchhoff Plates , .

[24]  Douglas N. Arnold,et al.  Some New Elements for the Reissner{Mindlin Plate Model , 1993 .

[25]  W. Spaans The finite element methods , 1975 .

[26]  K. Bathe,et al.  On the convergence of a four - node plate bending element based on Mindlin - Reissner plate theory a , 1985 .

[27]  J. Z. Zhu,et al.  The finite element method , 1977 .

[28]  Douglas N. Arnold INNOVATIVE FINITE ELEMENT METHODS FOR PLATES , 2001 .