A New Approach for Cluster Detection for Large Datasets with High Dimensionality
暂无分享,去创建一个
[1] Manuel de Buenaga,et al. Multidocument summarization: An added value to clustering in interactive retrieval , 2004 .
[2] Vipin Kumar,et al. Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.
[3] Shourya Roy,et al. A hierarchical monothetic document clustering algorithm for summarization and browsing search results , 2004, WWW '04.
[4] Joseph H. Goldberg,et al. Eye tracking in web search tasks: design implications , 2002, ETRA.
[5] Hans-Peter Kriegel,et al. OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.
[6] Susan R. Fussell,et al. Effects of task properties, partner actions, and message content on eye gaze patterns in a collaborative task , 2005, CHI.
[7] Bing Pan,et al. The determinants of web page viewing behavior: an eye-tracking study , 2004, ETRA.
[8] Tony F. Chan,et al. Computing standard deviations: accuracy , 1979, CACM.
[9] Hans-Peter Kriegel,et al. LOF: identifying density-based local outliers , 2000, SIGMOD 2000.
[10] Roel Vertegaal,et al. EyeWindows: evaluation of eye-controlled zooming windows for focus selection , 2005, CHI.
[11] Shumin Zhai,et al. Conversing with the user based on eye-gaze patterns , 2005, CHI.
[12] Osmar R. Zaïane,et al. A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..
[13] Jianhong Wu,et al. Subspace clustering for high dimensional categorical data , 2004, SKDD.