Mechanical linkages, dynamic geometry software, and argumentation: supporting a classroom culture of mathematical proof

..............................................................................................iii Declaration...........................................................................................v Acknowledgements............................................................................vii Refereed papers arising from this research.....................................ix List of Tables ....................................................................................xix List of Figures ...................................................................................xxi Chapter 1: Introduction .....................................................................1 1.1 Background ................................................................................................. 1 1.2 The aim of the research ............................................................................... 3 1.3 Outline of the thesis .................................................................................... 3 Chapter 2: Proof and Argumentation...............................................7 2.

[1]  Gila Hanna,et al.  Challenges to the Importance of Proof. , 1995 .

[2]  Jerome S. Bruner,et al.  Making sense: The child's construction of the world , 1987 .

[3]  Proof as Answer to the Question Why. , 1996 .

[4]  Martin A. Simon,et al.  Justification in the mathematics classroom: A study of prospective elementary teachers , 1996 .

[5]  Walter Zimmermann,et al.  Editors' introduction: What is mathematical visualization? , 1991 .

[6]  Michal Yerushalmy Complex Factors of Generalization Within a Computerized Microworld: The Case of Geometry , 1996 .

[7]  J. Horgan THE DEATH OF PROOF , 1993 .

[8]  Colette Laborde,et al.  Relationships between the spatial and theoretical in geometry: the role of computer dynamic representations in problem solving , 1998 .

[9]  Colette,et al.  What About a Learning Environment Where Euclidean Concepts are Manipulated with a Mouse , 1995 .

[10]  G. Harel,et al.  PROOF FRAMES OF PRESERVICE ELEMENTARY TEACHERS , 1989 .

[11]  Nicolas Balacheff The Benefits and Limits of Social Interaction: The Case of Mathematical Proof , 1991 .

[12]  Raymond Duval,et al.  Structure du raisonnement deductif et apprentissage de la demonstration , 1991 .

[13]  Eric Love,et al.  The Functions of Visualisation in Learning Geometry , 1995 .

[14]  J. Mayberry,et al.  The Van Hiele Levels of Geometric Thought in Undergraduate Preservice Teachers. , 1983 .

[15]  S. Senk How Well Do Students Write Geometry Proofs , 1985 .

[16]  L. Vygotsky,et al.  Thought and Language , 1963 .

[17]  L. A. Hausman How we Think , 1921 .

[18]  R. Hersh Proving is convincing and explaining , 1993 .

[19]  Peter Galbraith,et al.  Aspects of proving: A clinical investigation of process , 1981 .

[20]  Keith Jones,et al.  Proof in dynamic geometry contexts , 1998 .

[21]  Gill Thomas,et al.  Mathematical Interactions and Their Influence on Learning , 2001 .

[22]  E. Fischbein The theory of figural concepts , 1993 .

[23]  Alan H. Schoenfeld,et al.  Explorations of Students' Mathematical Beliefs and Behavior. , 1989 .

[24]  Enrique Galindo Assessing Justification and Proof in Geometry Classes Taught using Dynamic Software. , 1998 .

[25]  Celia Hoyles,et al.  Windows on Mathematical Meanings: Learning Cultures and Computers , 1996 .

[26]  Colette Laborde,et al.  Problem Solving in Geometry: From Microworlds to Intelligent Computer Environments , 1992 .

[27]  Steve Cunningham The visualization environment for mathematics education , 1991 .

[28]  P. Freire,et al.  A Conversation with Paulo Freire. , 1997 .

[29]  S. Senk van Hiele Levels and Achievement in Writing Geometry Proofs. , 1989 .

[30]  Joan Ferrini-Mundy,et al.  Principles and Standards for School Mathematics: A Guide for Mathematicians , 2000 .

[31]  Martin A. Simon Beyond inductive and deductive reasoning: The search for a sense of knowing , 1996 .

[32]  E. Paul Goldenberg,et al.  Ruminations About Dynamic Imagery (and a Strong Plea for Research) , 1995 .

[33]  N. Douek,et al.  SOME REMARKS ABOUT ARGUMENTATION AND MATHEMATICAL PROOF AND THEIR EDUCATIONAL IMPLICATIONS , 1999 .

[34]  D. Silverman Interpreting Qualitative Data , 1993 .

[35]  S. Toulmin The uses of argument , 1960 .

[36]  Mara Boni,et al.  Early approach to theoretical thinking: gears in primary school , 1999 .

[37]  Dominique Guin A Cognitive Analysis of Geometry Proof Focused on Intelligent Tutoring Systems , 1996 .

[38]  T. Dreyfus Why Johnny Can't Prove , 1999 .

[39]  David J. Fuys The van Hiele Model of Thinking in Geometry among Adolescents. Journal for Research in Mathematics Education Monograph Number 3. , 1988 .

[40]  David Clarke Untangling Uncertainty, Negotiation and Intersubjectivity , 2001 .

[41]  Maria Giuseppina Bartolini The Geometry of Drawing Instruments: Arguments for a didactical Use of Real and Virtual Copies, , 2001 .

[42]  J. Van Dormolen Learning to understand what giving a proof really means , 1977 .

[43]  R. Marrades,et al.  Proofs produced by secondary school students learning geometry in a dynamic computer environment , 2000 .

[44]  Paolo Boero,et al.  Challenging the traditional school approach to theorems: a hypothesis about the cognitive unity of theorems , 1996 .

[45]  Judgment and Reasoning in the Child , 1928, Nature.

[46]  M. Ainley,et al.  Interest in Learning and Classroom Interactions , 2001 .

[47]  Reinhard Hölzl,et al.  Using Dynamic Geometry Software to Add Contrast to Geometric Situations – A Case Study , 2001, Int. J. Comput. Math. Learn..

[48]  A. Bell,et al.  A study of pupils' proof-explanations in mathematical situations , 1976 .

[49]  Courtney B. Cazden,et al.  Exploring Vygotskian Perspectives in Education: the cognitive value of peer interaction , 1985 .

[50]  C. Hoyles,et al.  A Study of Proof Conceptions in Algebra , 2000 .

[51]  Celia Hoyles A culture of proving a school mathematics , 1997, Secondary School Mathematics in the World of Communication Technology.

[52]  Sue Willis,et al.  A national statement on mathematics for Australian schools , 1991 .

[53]  C. Laborde Dynamic Geometry Environments as a Source of Rich Learning Contexts for the Complex Activity of Proving , 2000 .

[54]  Götz Krummheuer The ethnography of argumentation. , 1995 .

[55]  M. G. Bartolini Bussi Drawing instruments: Theories and practices from history to didactics. , 1998 .

[56]  James B. Freeman,et al.  Dialectics and the Macrostructure of Arguments , 1991 .

[57]  N. Balacheff Aspects of proof in pupils ' practice of school mathematics , 2003 .

[58]  Martial Vivet,et al.  Micro-Robots as a Source of Motivation for Geometry , 1996 .

[59]  P. M. Hiele Structure and Insight: A Theory of Mathematics Education , 1985 .

[60]  David Clarke,et al.  Cognitive engagement in the Mathematics Classroom , 2001 .

[61]  Celia Hoyles Thematic Chapter: Exploratory Software, Exploratory Cultures? , 1995 .

[62]  F. J. Langdon,et al.  The Child's Conception of Space , 1967 .

[63]  L. S. Vygotksy Mind in society: the development of higher psychological processes , 1978 .

[64]  Philip J. Davis,et al.  The Mathematical Experience , 1982 .

[65]  David Tall Cognitive development, representations and proof , 1995 .

[66]  B. Schwarz,et al.  The role of contradiction and uncertainty in promoting the need to prove in Dynamic Geometry environments , 2000 .

[67]  Zalman Usiskin,et al.  Van Hiele Levels and Achievement in Secondary School Geometry. CDASSG Project. , 1982 .

[68]  Paolo Boero,et al.  Approaching geometry theorems in contexts: from history and epistemology to cognition , 1997 .

[69]  Dietmar Küchemann,et al.  Investigating factors that influence students' mathematical reasoning , 2001 .

[70]  R. Descartes The Geometry of Rene Descartes , 1925 .

[71]  Vimolan Mudaly,et al.  Pupils' needs for conviction and explanation within the context of dynamic geometry. , 1998 .

[72]  EFRAIM FISCHBEIN Intuition and Proof * , .

[73]  Tommy Dreyfus,et al.  Imagery for Diagrams , 1995 .

[74]  Jill Vincent,et al.  How Do You Draw an Isosceles Triangle , 1999 .

[75]  John R. Anderson,et al.  Abstract Planning and Perceptual Chunks: Elements of Expertise in Geometry , 1990, Cogn. Sci..

[76]  Robert B. Burns,et al.  Introduction to Research Methods , 2015, Research Methods for Political Science.

[77]  M. Mariotti Introduction to Proof: The Mediation of a Dynamic Software Environment , 2000 .

[78]  Jill Vincent Learning geometry : Cabri-geometre and the van Hiele levels , 1998 .