Faster Algorithms for Semi-Matching Problems

We consider the problem of finding <i>semi-matching</i> in bipartite graphs, which is also extensively studied under various names in the scheduling literature. We give faster algorithms for both weighted and unweighted cases. For the weighted case, we give an <i>O</i>(<i>nm</i>log <i>n</i>)-time algorithm, where <i>n</i> is the number of vertices and <i>m</i> is the number of edges, by exploiting the geometric structure of the problem. This improves the classical <i>O</i>(<i>n</i><sup>3</sup>)-time algorithms by Horn [1973] and Bruno et al. [1974b]. For the unweighted case, the bound can be improved even further. We give a simple divide-and-conquer algorithm that runs in <i>O</i>(√<i>nm</i>log <i>n</i>) time, improving two previous <i>O</i>(<i>nm</i>)-time algorithms by Abraham [2003] and Harvey et al. [2003, 2006]. We also extend this algorithm to solve the <i>Balanced Edge Cover</i> problem in <i>O</i>(√<i>nm</i>log <i>n</i>) time, improving the previous <i>O</i>(<i>nm</i>)-time algorithm by Harada et al. [2008].

[1]  Chung-Lun Li,et al.  Scheduling with processing set restrictions: A survey , 2008 .

[2]  Nicholas J. A. Harvey Algebraic Structures and Algorithms for Matching and Matroid Problems , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[3]  Arie Tamir,et al.  Least Majorized Elements and Generalized Polymatroids , 1995, Math. Oper. Res..

[4]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[5]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[6]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[7]  László Lovász The Membership Problem in Jump Systems , 1997, J. Comb. Theory, Ser. B.

[8]  Kunihiko Sadakane,et al.  Optimal Balanced Semi-Matchings for Weighted Bipartite Graphs , 2007 .

[9]  Edward G. Coffman,et al.  Algorithms for Minimizing Mean Flow Time , 1974, IFIP Congress.

[10]  Chor Ping Low An approximation algorithm for the load-balanced semi-matching problem in weighted bipartite graphs , 2006, Inf. Process. Lett..

[11]  Joseph Y.-T. Leung,et al.  A note on "An approximation algorithm for the load-balanced semi-matching problem in weighted bipartite graphs" , 2009, Inf. Process. Lett..

[12]  Chor Ping Low,et al.  An efficient retrieval selection algorithm for video servers with random duplicated assignment storage technique , 2002, Inf. Process. Lett..

[13]  Csaba D. Tóth,et al.  Uncoordinated Load Balancing and Congestion Games in P2P Systems , 2004, IPTPS.

[14]  Frantisek Galcík,et al.  On Computing an Optimal Semi-matching , 2016, Algorithmica.

[15]  Svetlana A. Kravchenko,et al.  Scheduling Jobs with Equal Processing Times , 2009 .

[16]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[17]  Robert E. Tarjan,et al.  Network Flow and Testing Graph Connectivity , 1975, SIAM J. Comput..

[18]  Zsuzsanna Vaik,et al.  Egerváry Research Group on Combinatorial Optimization on Scheduling Problems with Parallel Multi-purpose Machines on Scheduling Problems with Parallel Multi-purpose Machines , 2022 .

[19]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[20]  Kunihiko Sadakane,et al.  The Balanced Edge Cover Problem , 2008, ISAAC.

[21]  Csaba D. Tóth,et al.  Congestion Games, Load Balancing, and Price of Anarchy , 2004, CAAN.

[22]  David J. Evans,et al.  Analysis of the Q.A.D. algorithm for an homogeneous multiprocessor computing model with independent memories , 1985 .

[23]  Chung-Lun Li,et al.  Scheduling unit-length jobs with machine eligibility restrictions , 2006, Eur. J. Oper. Res..

[24]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[25]  Ling-Huey Su,et al.  Scheduling on identical parallel machines to minimize total completion time with deadline and machine eligibility constraints , 2009 .

[26]  Mitali Singh,et al.  Decentralized Utility-based Sensor Network Design , 2006, Mob. Networks Appl..

[27]  Rasaratnam Logendran,et al.  Unrelated parallel machine scheduling with job splitting , 2004 .

[28]  Bostjan Bresar,et al.  A generalization of Hungarian method and Hall's theorem with applications in wireless sensor networks , 2009, Discret. Appl. Math..

[29]  Danupon Nanongkai,et al.  Faster Algorithms for Semi-matching Problems (Extended Abstract) , 2010, ICALP.

[30]  René Sitters Two NP-Hardness Results for Preemptive Minsum Scheduling of Unrelated Parallel Machines , 2001, IPCO.

[31]  Nicholas J. A. Harvey Algebraic Algorithms for Matching and Matroid Problems , 2009, SIAM J. Comput..

[32]  Jacek Blazewicz,et al.  Handbook on Scheduling: From Theory to Applications , 2014 .

[33]  László Lovász,et al.  Semi-matchings for bipartite graphs and load balancing , 2003, J. Algorithms.

[34]  Ming-Yang Kao,et al.  An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartite Matchings , 2001, J. Algorithms.

[35]  W. A. Horn Technical Note - Minimizing Average Flow Time with Parallel Machines , 1973, Oper. Res..

[36]  Eugene Levner J. Blażewicz, K. Ecker, E. Pesch, G. Schmidt, J. Węglarz: Handbook on scheduling: from theory to applications , 2009, J. Sched..

[37]  Alexander V. Karzanov,et al.  On finding a maximum flow in a network with special structure and some applications 1 , 1973 .

[38]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[39]  R. Z. Norman,et al.  An algorithm for a minimum cover of a graph , 1959 .

[40]  Sirin Tekinay,et al.  A survey of game-theoretic approaches in wireless sensor networks , 2008, Comput. Networks.

[41]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[42]  Jacek Blazewicz,et al.  Handbook on Scheduling: Models and Methods for Advanced Planning (International Handbooks on Information Systems) , 2007 .

[43]  Yefim Dinitz,et al.  Dinitz' Algorithm: The Original Version and Even's Version , 2006, Essays in Memory of Shimon Even.

[44]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[45]  Tami Tamir,et al.  Algorithms for storage allocation based on client preferences , 2010, J. Comb. Optim..

[46]  Edward G. Coffman,et al.  Scheduling independent tasks to reduce mean finishing time , 1974, CACM.

[47]  N. Tomizawa,et al.  On some techniques useful for solution of transportation network problems , 1971, Networks.

[48]  Wenhua Li,et al.  Parallel machine scheduling of machine-dependent jobs with unit-length , 2004, Eur. J. Oper. Res..

[49]  Csaba D. Tóth,et al.  Selfish load balancing and atomic congestion games , 2004, SPAA '04.

[50]  LeeKangbok,et al.  Scheduling jobs with equal processing times subject to machine eligibility constraints , 2011 .

[51]  Shimon Even,et al.  An O (N2.5) algorithm for maximum matching in general graphs , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[52]  Frantisek Galcík,et al.  On Computing an Optimal Semi-matching , 2011, WG.