Astrocytes, spontaneity, and the developing thalamus

[1]  M. Sanderson,et al.  Intercellular calcium waves mediated by inositol trisphosphate. , 2007, Ciba Foundation symposium.

[2]  Nicholas C Spitzer,et al.  Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients , 2002, Journal of Physiology-Paris.

[3]  Vincenzo Crunelli,et al.  Pacemaker calcium oscillations in thalamic astrocytes in situ , 2001, Neuroreport.

[4]  J. García-Verdugo,et al.  Astrocytes Give Rise to New Neurons in the Adult Mammalian Hippocampus , 2001, The Journal of Neuroscience.

[5]  G. Kollias,et al.  CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity , 2001, Nature Neuroscience.

[6]  E. Newman,et al.  Propagation of Intercellular Calcium Waves in Retinal Astrocytes and Müller Cells , 2001, The Journal of Neuroscience.

[7]  T. Weissman,et al.  Neurons derived from radial glial cells establish radial units in neocortex , 2001, Nature.

[8]  M. Zonta,et al.  Cytosolic Calcium Oscillations in Astrocytes May Regulate Exocytotic Release of Glutamate , 2001, The Journal of Neuroscience.

[9]  C. Frassoni,et al.  Organization of radial and non‐radial glia in the developing rat thalamus , 2000, The Journal of comparative neurology.

[10]  P. Haydon,et al.  Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Cull-Candy,et al.  Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar Purkinje cells , 2000, The Journal of physiology.

[12]  A. Contestabile,et al.  Roles of NMDA receptor activity and nitric oxide production in brain development , 2000, Brain Research Reviews.

[13]  P. Haydon,et al.  Imaging Extracellular Waves of Glutamate during Calcium Signaling in Cultured Astrocytes , 2000, The Journal of Neuroscience.

[14]  A. Araque,et al.  SNARE Protein-Dependent Glutamate Release from Astrocytes , 2000, The Journal of Neuroscience.

[15]  J. Connor,et al.  Characterization of L-homocysteate-induced currents in Purkinje cells from wild-type and NMDA receptor knockout mice. , 1999, Journal of neurophysiology.

[16]  M. Sur,et al.  The neuronal form of nitric oxide synthase is required for pattern formation by retinal afferents in the ferret lateral geniculate nucleus. , 1999, Brain research. Developmental brain research.

[17]  J. Valtschanoff,et al.  Metabotropic glutamate receptors 2 and 3 expressed by astrocytes in rat ventrobasal thalamus , 1999, Neuroscience Letters.

[18]  S. B. Kater,et al.  ATP Released from Astrocytes Mediates Glial Calcium Waves , 1999, The Journal of Neuroscience.

[19]  S. Goldman,et al.  Astrocyte-mediated potentiation of inhibitory synaptic transmission , 1998, Nature Neuroscience.

[20]  M. Nedergaard,et al.  Cytoskeletal Assembly and ATP Release Regulate Astrocytic Calcium Signaling , 1998, The Journal of Neuroscience.

[21]  Hollis T. Cline,et al.  Glutamate Receptor Activity Is Required for Normal Development of Tectal Cell Dendrites In Vivo , 1998, The Journal of Neuroscience.

[22]  L. Venance,et al.  Intercellular calcium signaling and gap junctional communication in astrocytes , 1998, Glia.

[23]  A. Araque,et al.  Calcium Elevation in Astrocytes Causes an NMDA Receptor-Dependent Increase in the Frequency of Miniature Synaptic Currents in Cultured Hippocampal Neurons , 1998, The Journal of Neuroscience.

[24]  Molly M. Huntsman,et al.  Nucleus‐ and cell‐specific expression of NMDA and non‐NMDA receptor subunits in monkey thalamus , 1998 .

[25]  A. Kriegstein,et al.  Patterns of Intracellular Calcium Fluctuation in Precursor Cells of the Neocortical Ventricular Zone , 1998, The Journal of Neuroscience.

[26]  P. Golshani,et al.  Progression of change in NMDA, non-NMDA, and metabotropic glutamate receptor function at the developing corticothalamic synapse. , 1998, Journal of neurophysiology.

[27]  T. Salt,et al.  Modulation of sensory inhibition in the ventrobasal thalamus via activation of group II metabotropic glutamate receptors by 2R,4R-aminopyrrolidine-2,4-dicarboxylate , 1998, Experimental Brain Research.

[28]  D. Colquhoun,et al.  Single‐channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors , 1998, The Journal of physiology.

[29]  A. Araque,et al.  Glutamate‐dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons , 1998, The European journal of neuroscience.

[30]  L. C. Katz,et al.  Coordination of Neuronal Activity in Developing Visual Cortex by Gap Junction-Mediated Biochemical Communication , 1998, The Journal of Neuroscience.

[31]  Tullio Pozzan,et al.  Prostaglandins stimulate calcium-dependent glutamate release in astrocytes , 1998, Nature.

[32]  H. Sontheimer,et al.  Spontaneous intracellular calcium oscillations in cortical astrocytes from a patient with intractable childhood epilepsy (Rasmussen's Encephalitis) , 1997, Glia.

[33]  M. Cuénod,et al.  Light microscopic comparison of the patterns of glutamate-like and homocysteate-like immunoreactivities in rat dorsal lateral geniculate after combined visual cortical and retinal ablations , 1997, Neuroscience Research.

[34]  G. Wilkin,et al.  Identification of 5‐hydroxytryptamine receptors positively coupled to adenylyl cyclase in rat cultured astrocytes , 1997, British journal of pharmacology.

[35]  K. Do,et al.  Nitric oxide precursor arginine and S-nitrosoglutathione in synaptic and glial function. , 1996, Neurochemistry international.

[36]  A. Wenzel,et al.  Developmental and Regional Expression of NMDA Receptor Subtypes Containing the NR2D Subunit in Rat Brain , 1996, Journal of neurochemistry.

[37]  K. McCarthy,et al.  GFAP‐positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i , 1995, Glia.

[38]  N. Spitzer,et al.  Spontaneous neuronal calcium spikes and waves during early differentiation , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  D. Uhlrich,et al.  Histaminergic and non-histamine-immunoreactive mast cells within the cat lateral geniculate complex examined with light and electron microscopy , 1994, Neuroscience.

[40]  C. Frassoni,et al.  Distribution of AMPA selective glutamate receptors in the thalamus of adult rats and during postnatal development. A light and ultrastructural immunocytochemical study. , 1994, Brain research. Developmental brain research.

[41]  Fang Liu,et al.  Glutamate-mediated astrocyte–neuron signalling , 1994, Nature.

[42]  K. E. Binns,et al.  Release of the nitric oxide precursor, arginine, from the thalamus upon sensory afferent stimulation, and its effect on thalamic neurons in vivo , 1994, Neuroscience.

[43]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[44]  R. Wong,et al.  The role of firing patterns in neuronal development of sensory systems , 1993, Current Opinion in Neurobiology.

[45]  R. Yuste,et al.  Neuronal domains in developing neocortex. , 1992, Science.

[46]  A. N. van den Pol,et al.  Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  C. Müller,et al.  Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes , 1989, Nature.

[48]  M. Stryker,et al.  Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. , 1988, Science.

[49]  P. Herrling,et al.  In vitro release and electrophysiological effects in situ of homocysteic acid, an endogenous N-methyl-(D)-aspartic acid agonist, in the mammalian striatum , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  S. Sherman,et al.  Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[51]  H. Killackey,et al.  Ephemeral cellular segmentation in the thalamus of the neonatal rat. , 1981, Brain research.

[52]  M. A. Matthews,et al.  Neuronal maturation and synaptogenesis in the rat ventrobasal complex: Alignment with developmental changes in rate and severity of axon reaction , 1977, The Journal of comparative neurology.

[53]  A. Fatatis,et al.  Spontaneous changes in intracellular calcium concentration in type I astrocytes from rat cerebral cortex in primary culture , 1992, Glia.

[54]  C. Müller,et al.  Postnatal development of dye‐coupling among astrocytes in rat visual cortex , 1992, Glia.