Photon number resolution enables quantum receiver for realistic coherent optical communications

A quantum receiver based on photon-number-resolving detection and adaptive feedback is demonstrated. It can discriminate quadrature-phase-shift-keying coherent signals with error below the standard quantum limit.

[1]  R. Bondurant,et al.  Near-quantum optimum receivers for the phase-quadrature coherent-state channel. , 1993, Optics letters.

[2]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[3]  Saikat Guha,et al.  Realizable receivers for discriminating coherent and multicopy quantum states near the quantum limit , 2012, 1212.2048.

[4]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[5]  Shuntaro Takeda,et al.  Quantum-Enhanced Optical-Phase Tracking , 2012, Science.

[6]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[7]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[8]  N. Gisin,et al.  Phase-noise measurements in long-fiber interferometers for quantum-repeater applications , 2007, 0712.0740.

[9]  P. Andrekson,et al.  Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers , 2011 .

[10]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[11]  H M Wiseman,et al.  Entanglement-enhanced measurement of a completely unknown phase , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[12]  Julius Goldhar,et al.  Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination , 2013, Nature Photonics.

[13]  S. Lloyd,et al.  Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.

[14]  David J. Richardson,et al.  All-optical phase and amplitude regenerator for next-generation telecommunications systems , 2010 .

[15]  Francesca Parmigiani,et al.  26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing , 2011 .

[16]  Julius Goldhar,et al.  M-ary-state phase-shift-keying discrimination below the homodyne limit , 2011 .

[17]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[18]  Masahide Sasaki,et al.  Quantum receiver beyond the standard quantum limit of coherent optical communication. , 2011, Physical review letters.

[19]  R. Filip,et al.  Noise-powered probabilistic concentration of phase information , 2010, 1005.3706.

[20]  K. Kikuchi,et al.  Evaluation of Sensitivity of the Digital Coherent Receiver , 2008, Journal of Lightwave Technology.

[21]  K. Kikuchi,et al.  Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for Group-velocity dispersion compensation , 2006, IEEE Photonics Technology Letters.

[22]  K. Banaszek,et al.  Direct measurement of the Wigner function by photon counting , 1999 .

[23]  Brian J. Smith,et al.  Mapping coherence in measurement via full quantum tomography of a hybrid optical detector , 2012, Nature Photonics.

[24]  Sae Woo Nam,et al.  Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum , 2010, 1004.2727.

[25]  Bing Zhu,et al.  Suppressing the Errors Due to Mode Mismatch for $M$-Ary PSK Quantum Receivers Using Photon-Number-Resolving Detector , 2013, IEEE Photonics Technology Letters.

[26]  Masahiro Takeoka,et al.  QPSK coherent state discrimination via a hybrid receiver , 2012, 1204.0888.

[27]  U. Andersen,et al.  Quadrature phase shift keying coherent state discrimination via a hybrid receiver , 2012 .

[28]  Masahiko Jinno,et al.  Networks: Optical-transport networks in 2015 , 2007 .

[29]  D. Rosenberg,et al.  High-speed and high-efficiency superconducting nanowire single photon detector array. , 2013, Optics express.

[30]  Y. Silberberg,et al.  High-NOON States by Mixing Quantum and Classical Light , 2010, Science.

[31]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[32]  Masahide Sasaki,et al.  Quantum receivers with squeezing and photon-number-resolving detectors for M -ary coherent state discrimination , 2013, 1302.2691.

[33]  Christine Silberhorn,et al.  Probing the negative Wigner function of a pulsed single photon point by point. , 2010, Physical review letters.

[34]  Robert L. Cook,et al.  Optical coherent state discrimination using a closed-loop quantum measurement , 2007, Nature.

[35]  John G. Proakis,et al.  Digital Communications , 1983 .

[36]  Masahide Sasaki,et al.  Demonstration of near-optimal discrimination of optical coherent states. , 2008, Physical review letters.

[37]  Sae Woo Nam,et al.  Real‐Time Data‐Acquisition Platform for Pulsed Measurements , 2010 .

[38]  Masahiro Takeoka,et al.  Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector. , 2009, Physical review letters.

[39]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[40]  J. P. Odenwalder,et al.  Error Control Coding Handbook , 1976 .

[41]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[42]  C. Helstrom Quantum detection and estimation theory , 1969 .

[43]  Masahide Sasaki,et al.  Displacement receiver for phase-shift-keyed coherent states , 2012, 1208.1815.

[44]  Joseph Kakande,et al.  Multilevel quantization of optical phase in a novel coherent parametric mixer architecture , 2011 .

[45]  J. Habif,et al.  Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver , 2011, Nature Photonics.