Mode-locked silicon evanescent lasers.

We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

[1]  Oded Cohen,et al.  Silicon-based laser, amplifier, and wavelength converter for optoelectronic integration , 2006, SPIE OPTO.

[2]  John E. Bowers,et al.  Relative and absolute timing jitter in actively mode-locked semiconductor lasers , 1990 .

[3]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[4]  H. Haus Theory of mode locking with a slow saturable absorber , 1975 .

[5]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Omri Raday,et al.  A hybrid AlGaInAs-silicon evanescent waveguide photodetector. , 2007, Optics express.

[7]  S.J.B. Yoo,et al.  Synchronized transform-limited operation of 10-GHz colliding pulse mode-locked laser , 2006, IEEE Photonics Technology Letters.

[8]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[9]  Nahum Izhaky,et al.  High-speed optical modulation based on carrier depletion in a silicon waveguide. , 2007, Optics express.

[10]  David A B Miller,et al.  Optical modulator on silicon employing germanium quantum wells. , 2007, Optics express.

[11]  S. Gee,et al.  Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications , 2006, Journal of Lightwave Technology.

[12]  Y. Ogawa,et al.  Electrical clock recovery based on all-optical signal processing in a monolithic passively mode-locked laser diode , 2006, IEEE Photonics Technology Letters.

[13]  Klas Hjort,et al.  Plasma-assisted InP-to-Si low temperature wafer bonding , 2002 .

[14]  Qianfan Xu,et al.  12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. , 2007, Optics express.

[15]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[16]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[17]  Yoh Ogawa,et al.  500 GHz optical short pulse generation from a monolithic passively mode‐locked distributed Bragg reflector laser diode , 1994 .

[18]  John E. Bowers,et al.  Short pulse generation using multisegment mode-locked semiconductor lasers , 1992 .

[19]  Yoh Ogawa,et al.  40 GHz Actively Mode-Locked Distributed Bragg Reflector Laser Diode Module with an Impedance-Matching Circuit for Efficient RF Signal Injection , 2004 .

[20]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[21]  E. L. Portnoi,et al.  Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications , 2000 .

[22]  Kam Y. Lau,et al.  Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies , 1993 .

[23]  Y. Ogawa,et al.  Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode , 2005, IEEE Journal of Quantum Electronics.

[24]  Yohan Barbarin,et al.  Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53microm. , 2006, Optics express.

[25]  Low temperature InP/Si wafer bonding , 2004 .

[26]  Zhaoyang Hu,et al.  Monolithic Mode-Locked Laser and Optical Amplifier for Regenerative Pulsed Optical Clock Recovery , 2007, IEEE Photonics Technology Letters.

[27]  K. Minoshima,et al.  High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. , 2000, Applied optics.

[28]  Hyundai Park,et al.  A Hybrid AlGaInAs–Silicon Evanescent Amplifier , 2007, IEEE Photonics Technology Letters.