300-MHz-repetition-rate, all-fiber, femtosecond laser mode-locked by planar lightwave circuit-based saturable absorber.

We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.

[1]  George C Valley,et al.  Photonic analog-to-digital converters. , 2007, Optics express.

[2]  Thomas Udem,et al.  Cavity-enhanced dual-comb spectroscopy , 2009, 0908.1928.

[3]  Xiaoming Wei,et al.  Compact all-fiber ring femtosecond laser with high fundamental repetition rate. , 2012, Optics express.

[4]  F. Yoshino,et al.  Micromachining with a High Repetition Rate Femtosecond Fiber Laser , 2008 .

[5]  Khanh Kieu,et al.  Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength. , 2013, Optics express.

[6]  Andrew M. Weiner,et al.  Optical arbitrary waveform generation , 2010 .

[7]  M. Nakazawa,et al.  Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers. , 1996, Optics letters.

[8]  Günter Steinmeyer,et al.  Boosting the Non Linear Optical Response of Carbon Nanotube Saturable Absorbers for Broadband Mode‐Locking of Bulk Lasers , 2010 .

[9]  J. Moon,et al.  Ge-doped SiO2 glass films prepared by plasma enhanced chemical vapor deposition for planar waveguides , 2004 .

[10]  Jaroslaw Sotor,et al.  Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator. , 2015, Optics letters.

[11]  J.W. Nicholson,et al.  High-Repetition-Frequency Low-Noise Fiber Ring Lasers Mode-Locked With Carbon Nanotubes , 2008, IEEE Photonics Technology Letters.

[12]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[13]  R. Norwood,et al.  Investigation of Second- and Third-Harmonic Generation in Few-Layer Gallium Selenide by Multiphoton Microscopy , 2015, Scientific Reports.

[14]  J W Nicholson,et al.  Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements. , 1999, Optics letters.

[15]  Shinji Yamashita,et al.  Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers. , 2007, Optics letters.

[16]  S. Choi,et al.  Ultrafast Mode-Locked Fiber Laser Using a Waveguide-Type Saturable Absorber Based on Single-Walled Carbon Nanotubes , 2013 .

[17]  Masud Mansuripur,et al.  Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. , 2007, Optics letters.

[18]  Junsu Lee,et al.  A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. , 2014, Optics express.

[19]  Junho Shin,et al.  Frequency comb-based microwave transfer over fiber with 7×10(-19) instability using fiber-loop optical-microwave phase detectors. , 2014, Optics letters.

[20]  Soohyun Kim,et al.  Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser. , 2012, Optics express.

[21]  Jaroslaw Sotor,et al.  Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator , 2014 .

[22]  F. Torrisi,et al.  Sub 200 fs pulse generation from a graphene mode-locked fiber laser , 2010, 1010.1329.

[23]  S. Yamashita,et al.  Planar waveguide-type saturable absorber based on carbon nanotubes , 2006 .

[24]  Hiroshi Takahashi Planar lightwave circuit devices for optical communication: present and future , 2003, SPIE ITCom.

[25]  Franz X Kärtner,et al.  High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter. , 2008, Optics letters.

[26]  O. Okhotnikov,et al.  Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications , 2004 .

[27]  Jun Wang,et al.  463-MHz fundamental mode-locked fiber laser based on few-layer MoS(2) saturable absorber. , 2015, Optics letters.

[28]  Zhipei Sun,et al.  74-fs nanotube-mode-locked fiber laser , 2012 .

[29]  Kwanil Lee,et al.  Active control of all-fibre graphene devices with electrical gating , 2015, Nature Communications.

[30]  S. Choi,et al.  All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber. , 2014, Optics express.