1060 nm VCSELs for long-reach optical interconnects

Reach extension of high capacity optical interconnects based on vertical-cavity surface-emitting lasers (VCSELs) and multimode fibers (MMFs), as needed for large-scale data centers, would benefit from high-speed GaAs-based VCSELs at 1060 nm. At this wavelength, the chromatic dispersion and attenuation of the optical fiber are much reduced in comparison with 850 nm. We present single and multimode 1060 nm VCSELs based on designs derived partly from our high-speed 850 nm VCSEL designs. The single-mode VCSEL, with a modulation bandwidth exceeding 22 GHz, supports back-to-back data rates up to 50 Gbps at 25 °C and 40 Gbps at 85 °C under binary NRZ (OOK) modulation. Using mode-selective launch, we demonstrate error-free 25 Gbps transmission over 1000m of 1060 nm optimized MMF. Higher data rates and/or longer distances will be possible with equalization, forward-error-correction, and/or multilevel modulation.

[1]  P. Westbergh,et al.  High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85$^{\circ}{\rm C}$ , 2013, IEEE Photonics Technology Letters.

[2]  I. Lyubomirsky,et al.  VCSEL-Based Interconnects for Current and Future Data Centers , 2015, Journal of Lightwave Technology.

[3]  G. A. Rodes,et al.  30 Gbps bottom-emitting 1060 nm VCSEL , 2014, 2014 The European Conference on Optical Communication (ECOC).

[4]  M. Funabashi,et al.  The Development of the 1060 nm 28 Gb / s VCSEL and the Characteristics of the Multi-mode Fiber Link , 2015 .

[5]  Ming-Jun Li,et al.  Novel optical fibers for data center applications , 2016, SPIE OPTO.

[6]  J. Straznicky,et al.  Progress towards low cost Tbps optical engines , 2015, 2015 IEEE CPMT Symposium Japan (ICSJ).

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[9]  Nikolai Ledentsov,et al.  54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF , 2016 .

[10]  Shigeru Nakagawa,et al.  Energy-Efficient 1060-nm Optical Link Operating up to 28 Gb/s , 2015, Journal of Lightwave Technology.

[11]  L. Coldren,et al.  P-type δ-doping of highly-strained VCSELs for 25 Gbps operation , 2012, IEEE Photonics Conference 2012.

[12]  Robert Lingle,et al.  First demonstration of PAM4 transmissions for record reach and high-capacity SWDM links over MMF using 40G/100G PAM4 IC chipset with real-time DSP , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[13]  Kazuya Nagashima,et al.  A Record 1-km MMF NRZ 25.78-Gb/s Error-Free Link Using a 1060-nm DIC VCSEL , 2016, IEEE Photonics Technology Letters.

[14]  Hao-Chung Kuo,et al.  Very High Bit-Rate Distance Product Using High-Power Single-Mode 850-nm VCSEL With Discrete Multitone Modulation Formats Through OM4 Multimode Fiber , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Takayoshi Anan,et al.  High Speed 1.1-µm-Range InGaAs-Based VCSELs , 2009, IEICE Trans. Electron..

[16]  Rick Pimpinella,et al.  Investigation of 60 Gb/s 4-PAM Using an 850 nm VCSEL and Multimode Fiber , 2016, Journal of Lightwave Technology.

[17]  G. R. Hadley,et al.  Effective index model for vertical-cavity surface-emitting lasers. , 1995, Optics letters.

[18]  Daniel Mahgerefteh,et al.  Techno-Economic Comparison of Silicon Photonics and Multimode VCSELs , 2015, Journal of Lightwave Technology.

[19]  H. Hatakeyama,et al.  Highly Reliable High-Speed 1.1- $\mu$m-Range VCSELs With InGaAs/GaAsP-MQWs , 2010, IEEE Journal of Quantum Electronics.

[20]  George Panotopoulos,et al.  Universal Photonic Interconnect for Data Centers , 2017, Journal of Lightwave Technology.

[21]  Takayoshi Anan,et al.  25 Gbit/s operation of InGaAs-based VCSELs , 2006 .

[22]  Johan S. Gustavsson,et al.  20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL , 2014 .

[23]  Johan S. Gustavsson,et al.  Impact of Damping on High-Speed Large Signal VCSEL Dynamics , 2015, Journal of Lightwave Technology.

[24]  Mikel Agustin,et al.  High speed 160 Gb/s DMT VCSEL transmission using pre-equalization , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[25]  James A. Lott,et al.  Large Bandwidth, Small Current Density, and Temperature Stable 980-nm VCSELs , 2017, IEEE Journal of Quantum Electronics.

[26]  Casimer DeCusatis,et al.  Optical Interconnect Networks for Data Communications , 2014, Journal of Lightwave Technology.

[27]  James A. Lott,et al.  30-GHz Bandwidth With Directly Current-Modulated 980-nm Oxide-Aperture VCSELs , 2017, IEEE Photonics Technology Letters.

[28]  Johan S. Gustavsson,et al.  High-Speed VCSELs With Strong Confinement of Optical Fields and Carriers , 2016, Journal of Lightwave Technology.

[29]  Chia-Chien Wei,et al.  High bit-rate distance product of 128 Gbps.km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[30]  Minko Balkanski,et al.  Semiconductor physics and applications , 2000 .

[31]  Johan S. Gustavsson,et al.  30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s , 2015 .

[32]  Brian Thibeault,et al.  Vertical cavity lasers with tapered oxide apertures for low scattering loss , 1997 .