Counting Problems and Algebraic Formal Power Series in Noncommuting Variables

Abstract In this work we study the complexity of certain counting functions related to formal power series in noncommuting variables. We prove that, for every algebraic formal power series in Z 《∑》, the problem of computing the corresponding counting function is NC1-reducible to integer division. As a consequence, for every unambiguous context-free language L⊆∑*, the problem of computing #{xϵL:|x|=n} is also NC1-reducible to integer division. Therefore all t hese counting problems are solvable by families of log-space uniform boolean circuits of depth O(log n log log n) and polynomial size.

[1]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1984, SIAM J. Comput..

[2]  Alberto Bertoni,et al.  The Complexity of Computing the Number of Strings of Given Length in Context-Free Languages , 1991, Theor. Comput. Sci..

[3]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[4]  Dung T. Huynh,et al.  The complexity of ranking , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[5]  Noam Chomsky,et al.  The Algebraic Theory of Context-Free Languages* , 1963 .

[6]  Andrew V. Goldberg,et al.  Compression and Ranking , 1991, SIAM J. Comput..

[7]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[8]  Alberto Bertoni,et al.  Computing the Counting Function of Context-Free Languages , 1987, STACS.

[9]  John H. Reif Logarithmic Depth Circuits for Algebraic Functions , 1986, SIAM J. Comput..

[10]  Philippe Flajolet,et al.  Analytic Models and Ambiguity of Context-free Languages* , 2022 .

[11]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[12]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[13]  Jay R. Goldman,et al.  Formal Languages and Enumeration , 1978, J. Comb. Theory, Ser. A.