Lattice Rules for Multivariate Approximation in the Worst Case Setting
暂无分享,去创建一个
[1] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[2] Henryk Wozniakowski,et al. Liberating the weights , 2004, J. Complex..
[3] E. Novak,et al. Tractability of Approximation for Weighted Korobov Spaces on Classical and Quantum Computers , 2002, Found. Comput. Math..
[4] Fred J. Hickernell,et al. Error Analysis of Splines for Periodic Problems Using Lattice Designs , 2006 .
[5] Josef Dick. On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..
[6] Henryk Wozniakowski,et al. Information-based complexity , 1987, Nature.
[7] F. J. Hickernell,et al. Tractability of Multivariate Integration for Periodic Functions , 2001, J. Complex..
[8] Ian H. Sloan,et al. Component-by-component construction of good lattice rules , 2002, Math. Comput..
[9] Frances Y. Kuo,et al. Reducing the construction cost of the component-by-component construction of good lattice rules , 2004, Math. Comput..
[10] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[11] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[12] Frances Y. Kuo,et al. Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..
[13] Frances Y. Kuo,et al. Constructing Good Lattice Rules with Millions of Points , 2004 .
[14] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[15] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[16] H. Woxniakowski. Information-Based Complexity , 1988 .
[17] Henryk Wozniakowski,et al. On the Power of Standard Information for Weighted Approximation , 2001, Found. Comput. Math..
[18] Владимир Николаевич Темляков,et al. О восстановлении пер иодических функций н ескольких переменных по значен иям в узлах теоретико числовых сеток , 1986 .
[19] Vladimir N. Temlyakov,et al. On Approximate Recovery of Functions with Bounded Mixed Derivative , 1993, J. Complex..
[20] S. Y. Cheng,et al. Recent advances in scientific computing and partial differential equations : international conference on the occasion of Stanley Osher's 60th birthday, December 12-15, 2002, Hong Kong Baptist University, Hong Kong , 2003 .
[21] Henryk Wozniakowski,et al. Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..
[22] Frances Y. Kuo,et al. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..
[23] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[24] Frances Y. Kuo,et al. Component-By-Component Construction of Good Intermediate-Rank Lattice Rules , 2003, SIAM J. Numer. Anal..
[25] Vladimir Temlyakov,et al. APPROXIMATE RECOVERY OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES , 1987 .