Coherent coupling between a quantum dot and a donor in silicon

Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show that the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.In silicon, quantum information can be stored in donors or quantum dots, each with its advantages and limitations—particularly in terms of fabrication. Here the authors coherently couple a phosphorous donor’s electron spin to a quantum dot, encoding information in the hybrid two-electron system’s state.

[1]  J. Moussa,et al.  Multivalley effective mass theory simulation of donors in silicon , 2014, 1408.3159.

[2]  Jacob M. Taylor,et al.  Tunable Spin-Qubit Coupling Mediated by a Multielectron Quantum Dot. , 2013, Physical review letters.

[3]  M. Lukin,et al.  Relaxation, dephasing, and quantum control of electron spins in double quantum dots , 2006, cond-mat/0602470.

[4]  S. Barraud,et al.  Charge dynamics and spin blockade in a hybrid double quantum dot in silicon , 2015, 1503.01049.

[5]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[6]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[7]  J. R. Wendt,et al.  Electrostatically defined silicon quantum dots with counted antimony donor implants , 2015 .

[8]  Jacob M. Taylor,et al.  Self-consistent measurement and state tomography of an exchange-only spin qubit. , 2013, Nature nanotechnology.

[9]  Erik Nielsen,et al.  Valley splitting of single-electron Si MOS quantum dots , 2016, 1610.03388.

[10]  Jacob M. Taylor,et al.  Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.

[11]  Robert D. Carr,et al.  Implications of electronics constraints for solid-state quantum error correction and quantum circuit failure probability , 2011, 1105.0682.

[12]  D. DiVincenzo,et al.  High-fidelity single-qubit gates for two-electron spin qubits in GaAs. , 2014, Physical review letters.

[13]  A. Gossard,et al.  Coherent operations and screening in multielectron spin qubits. , 2013, Physical review letters.

[14]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[15]  Max G. Lagally,et al.  Atom Motion on Surfaces , 1993 .

[16]  R Brunner,et al.  Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. , 2011, Physical review letters.

[17]  A. C. Doherty,et al.  Suppressing qubit dephasing using real-time Hamiltonian estimation , 2014, Nature Communications.

[18]  S. Das Sarma,et al.  Quantum control and manipulation of donor electrons in Si-based quantum computing , 2008, 0809.3660.

[19]  Hongwen Jiang,et al.  Parallel spin filling and energy spectroscopy in few-electron Si metal-on-semiconductor-based quantum dots , 2010 .

[20]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.

[21]  Joel R. Wendt,et al.  Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures , 2016 .

[22]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[23]  A C Gossard,et al.  Spin and polarized current from Coulomb blockaded quantum dots. , 2003, Physical review letters.

[24]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[25]  B. E. Kane,et al.  Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.

[26]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[27]  Jacob M. Taylor,et al.  Quantum-dot-based resonant exchange qubit. , 2013, Physical review letters.

[28]  G. Pica,et al.  Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings , 2015, 1506.04913.

[29]  J. Verduijn Silicon Quantum Electronics , 2012 .

[30]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[31]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[32]  Zhan Shi,et al.  Two-axis control of a singlet–triplet qubit with an integrated micromagnet , 2014, Proceedings of the National Academy of Sciences.

[33]  G. J. Milburn,et al.  Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems , 2000 .

[34]  A. C. Gossard,et al.  Relaxation and readout visibility of a singlet-triplet qubit in an Overhauser field gradient , 2011, 1108.4210.

[35]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[36]  Gerhard Klimeck,et al.  Silicon quantum processor with robust long-distance qubit couplings , 2015, Nature Communications.

[37]  Gerhard Klimeck,et al.  Spin blockade and exchange in Coulomb-confined silicon double quantum dots. , 2014, Nature nanotechnology.

[38]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[39]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[40]  T. Lu,et al.  Electron spin lifetime of a single antimony donor in silicon , 2013 .

[41]  E. Bielejec,et al.  Single ion implantation for single donor devices using Geiger mode detectors , 2009, Nanotechnology.

[42]  S. Sarma,et al.  Six-electron semiconductor double quantum dot qubits , 2013, 1304.6064.

[43]  Z. R. Wasilewski,et al.  Enhanced charge detection of spin qubit readout via an intermediate state , 2012, 1206.0778.

[44]  Z. R. Wasilewski,et al.  Coherent control of three-spin states in a triple quantum dot , 2011, Nature Physics.

[45]  C. Yang,et al.  Charge state hysteresis in semiconductor quantum dots , 2014, 1407.1625.

[46]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[47]  Zhan Shi,et al.  Coherent quantum oscillations and echo measurements of a Si charge qubit , 2013 .

[48]  B. Halperin,et al.  Quenching of dynamic nuclear polarization by spin–orbit coupling in GaAs quantum dots , 2015, Nature Communications.

[49]  A. Gossard,et al.  Quantum coherence in a one-electron semiconductor charge qubit. , 2010, Physical review letters.

[50]  Andrea Morello,et al.  Electron spin decoherence in isotope-enriched silicon. , 2010, Physical review letters.

[51]  C. Yang,et al.  Spin filling of valley–orbit states in a silicon quantum dot , 2011, Nanotechnology.

[52]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[53]  L. M. K. Vandersypen,et al.  Single-Shot Correlations and Two-Qubit Gate of Solid-State Spins , 2011, Science.

[54]  Andrea Morello,et al.  Single-shot readout and relaxation of singlet and triplet states in exchange-coupled 31P electron spins in silicon. , 2014, Physical review letters.

[55]  A. Yacoby,et al.  Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit. , 2012, Physical review letters.

[56]  Saeed Fallahi,et al.  High-fidelity entangling gate for double-quantum-dot spin qubits , 2016, 1608.04258.

[57]  Takashi Nakajima,et al.  A fault-tolerant addressable spin qubit in a natural silicon quantum dot , 2016, Science Advances.

[58]  W. A. Coish,et al.  Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot , 2010, Scientific reports.

[59]  T. Honda,et al.  Shell Filling and Spin Effects in a Few Electron Quantum Dot. , 1996, Physical review letters.

[60]  Adele E. Schmitz,et al.  Isotopically enhanced triple-quantum-dot qubit , 2015, Science Advances.

[61]  J. Levy Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. , 2001, Physical review letters.