Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere–ionosphere

Abstract. The Daedalus mission has been proposed to the European Space Agency (ESA) in response to the call for ideas for the Earth Observation program's 10th Earth Explorer. It was selected in 2018 as one of three candidates for a phase-0 feasibility study. The goal of the mission is to quantify the key electrodynamic processes that determine the structure and composition of the upper atmosphere, the gateway between the Earth's atmosphere and space. An innovative preliminary mission design allows Daedalus to access electrodynamics processes down to altitudes of 150 km and below. Daedalus will perform in situ measurements of plasma density and temperature, ion drift, neutral density and wind, ion and neutral composition, electric and magnetic fields, and precipitating particles. These measurements will unambiguously quantify the amount of energy deposited in the upper atmosphere during active and quiet geomagnetic times via Joule heating and energetic particle precipitation, estimates of which currently vary by orders of magnitude between models and observation methods. An innovation of the Daedalus preliminary mission concept is that it includes the release of subsatellites at low altitudes: combined with the main spacecraft, these subsatellites will provide multipoint measurements throughout the lower thermosphere–ionosphere (LTI) region, down to altitudes below 120 km, in the heart of the most under-explored region in the Earth's atmosphere. This paper describes Daedalus as originally proposed to the ESA.

[1]  A. Pedersen,et al.  The Multi-needle Langmuir Probe Instrument for QB50 Mission: Case Studies of Ex-Alta 1 and Hoopoe Satellites , 2019, Space Science Reviews.

[2]  P. Visser,et al.  Torque model verification for the GOCE satellite , 2018, Advances in Space Research.

[3]  K. Asamura,et al.  of Geophysical Research : Space Physics Electron Energy Spectrum and Auroral Power Estimation From Incoherent Scatter Radar Measurements , 2018 .

[4]  A. Halford,et al.  PetitSat - a 6U CubeSat to examine the link between MSTIDs and ionospheric plasma density enhancements , 2018 .

[5]  Qian Wu,et al.  Seasonal Dependence of Geomagnetic Active‐Time Northern High‐Latitude Upper Thermospheric Winds , 2018 .

[6]  D. Klumpar,et al.  Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II , 2017 .

[7]  J. Laštovička,et al.  Preface to Long-term trends in the upper atmosphere and ionosphere , 2017 .

[8]  A. Thomson,et al.  Long‐term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver , 2017 .

[9]  S. Solomon Global modeling of thermospheric airglow in the far ultraviolet , 2017 .

[10]  Daniel T. Welling,et al.  Geomagnetically induced currents: Science, engineering, and applications readiness , 2017 .

[11]  H. Lühr,et al.  Net ionospheric currents closing field‐aligned currents in the auroral region: CHAMP results , 2017 .

[12]  H. Fahr,et al.  The response of the H geocorona between 3 and 8 R e to geomagnetic disturbances studied using TWINS stereo Lyman- α data , 2017 .

[13]  Ying Lin,et al.  Model simulations of ion and electron density profiles in ionospheric E and F regions , 2017 .

[14]  H. Lühr,et al.  Morphology of high‐latitude plasma density perturbations as deduced from the total electron content measurements onboard the Swarm constellation , 2017 .

[15]  F. Mozer DC and low‐frequency double probe electric field measurements in space , 2016 .

[16]  Nils Olsen,et al.  Sunlight effects on the 3D polar current system determined from low Earth orbit measurements , 2016, Earth, Planets and Space.

[17]  Chao Xiong,et al.  The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities , 2016 .

[18]  Timothy Fuller-Rowell,et al.  Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results , 2016 .

[19]  D. Summers,et al.  The Digital Fields Board for the FIELDS instrument suite on the Solar Probe Plus mission: Analog and digital signal processing , 2016 .

[20]  Thomas Jager,et al.  Swarm Absolute Scalar Magnetometers first in-orbit results , 2016 .

[21]  Per-Arne Lindqvist,et al.  The Axial Double Probe and Fields Signal Processing for the MMS Mission , 2016 .

[22]  Gary R. Swenson,et al.  LAICE CubeSat mission for gravity wave studies , 2015 .

[23]  R. Ergun,et al.  The Langmuir Probe and Waves (LPW) Instrument for MAVEN , 2015 .

[24]  J. Emmert,et al.  Thermospheric mass density: A review , 2015 .

[25]  Iwona Stanislawska,et al.  The science case for the EISCAT_3D radar , 2015, Progress in Earth and Planetary Science.

[26]  T. Oddy,et al.  The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer , 2015 .

[27]  A. Chulliat,et al.  In-flight performance of the Absolute Scalar Magnetometer vector mode on board the Swarm satellites , 2015, Earth, Planets and Space.

[28]  R. Roble,et al.  New 3‐D simulations of climate change in the thermosphere , 2015 .

[29]  E. Sittler,et al.  A Compact Ion and Neutral Mass Spectrometer for the Exocube Mission , 2014 .

[30]  C. Rodger,et al.  Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone , 2014, Nature Communications.

[31]  Y. Xiong,et al.  Influence of precipitating energetic ions caused by EMIC waves on the subauroral ionospheric E region during a geomagnetic storm , 2014 .

[32]  S. Nozawa,et al.  Upper atmosphere cooling over the past 33 years , 2014 .

[33]  J. Forbes,et al.  Tidal‐induced net transport effects on the oxygen distribution in the thermosphere , 2014 .

[34]  A. Richmond,et al.  Ionospheric Electrodynamics Modeling , 2014 .

[35]  Cameron Weston,et al.  Design, Development, Implementation, and On-orbit Performance of the Dynamic Ionosphere CubeSat Experiment Mission , 2014 .

[36]  Hermann Lühr,et al.  Determining field-aligned currents with the Swarm constellation mission , 2013, Earth, Planets and Space.

[37]  T. Nygrén,et al.  Height‐dependent energy exchange rates in the high‐latitude E region ionosphere , 2013 .

[38]  Dhiren Kataria,et al.  In-flight calibration of the Cluster PEACE sensors , 2013 .

[39]  Harlan E. Spence,et al.  First results from CSSWE CubeSat: Characteristics of relativistic electrons in the near‐Earth environment during the October 2012 magnetic storms , 2013 .

[40]  J. McCauley,et al.  The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission , 2013 .

[41]  J. Meriwether,et al.  Low latitude thermospheric responses to magnetic storms , 2013 .

[42]  J. Laštovička Trends in the upper atmosphere and ionosphere: Recent progress , 2013 .

[43]  N. Y. Ganushkina,et al.  Defining and resolving current systems in geospace , 2013, 1701.04714.

[44]  M. Sinnhuber,et al.  Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere , 2012, Surveys in Geophysics.

[45]  Jaan Praks,et al.  Aalto-1 nanosatellite Technical description and mission objectives , 2012 .

[46]  T. Nygrén,et al.  Statistical distribution of height‐integrated energy exchange rates in the ionosphere , 2012 .

[47]  R. Heelis,et al.  Ion drift meter calibration and photoemission correction for the C/NOFS satellite , 2012 .

[48]  T. Pulkkinen,et al.  The GUMICS-4 global MHD magnetosphere-ionosphere coupling simulation , 2012 .

[49]  Mariangel Fedrizzi,et al.  Global Joule heating index derived from thermospheric density physics‐based modeling and observations , 2012 .

[50]  M. Nicolls,et al.  High-latitudeEregion ionosphere-thermosphere coupling: A comparative study using in situ and incoherent scatter radar observations , 2012 .

[51]  H. Schuh,et al.  Global Ionosphere Maps of VTEC from GNSS, satellite altimetry, and formosat-3/COSMIC data , 2011 .

[52]  G. W. Prölss Density Perturbations in the Upper Atmosphere Caused by the Dissipation of Solar Wind Energy , 2011 .

[53]  J. Laštovička,et al.  Progress in observations and simulations of global change in the upper atmosphere , 2011 .

[54]  C. Randall,et al.  Parameterization of monoenergetic electron impact ionization , 2010 .

[55]  Eelco Doornbos,et al.  Neutral Density and Crosswind Determination from Arbitrarily Oriented Multiaxis Accelerometers on Satellites , 2010 .

[56]  Ingo Richter,et al.  Magnetic field investigations during ROSETTA's 2867 Steins flyby , 2010 .

[57]  K. Kauristie,et al.  A statistical investigation of the Cowling channel efficiency in the auroral zone , 2010 .

[58]  T. Yeoman,et al.  Thermal ion upflow in the cusp ionosphere and its dependence on soft electron energy flux , 2010 .

[59]  J. Green,et al.  Use of POES SEM-2 observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere , 2010 .

[60]  C. Randall,et al.  Geomagnetic activity and polar surface air temperature variability , 2009 .

[61]  A. Aikio,et al.  Statistical properties of Joule heating rate, electric field and conductances at high latitudes , 2009 .

[62]  M. Larsen,et al.  Rocket‐based measurements of ion velocity, neutral wind, and electric field in the collisional transition region of the auroral ionosphere , 2009 .

[63]  Paul B. Hays,et al.  An empirical model of the Earth's horizontal wind fields: HWM07 , 2008 .

[64]  Robert E. Ergun,et al.  The THEMIS Digital Fields Board , 2008 .

[65]  D. Bilitza,et al.  International Reference Ionosphere 2007: Improvements and new parameters , 2008 .

[66]  J. Sauvaud,et al.  TARANIS—A Satellite Project Dedicated to the Physics of TLEs and TGFs , 2008 .

[67]  Werner Magnes,et al.  The THEMIS Fluxgate Magnetometer , 2008 .

[68]  J. McCauley,et al.  The Electric Antennas for the STEREO/WAVES Experiment , 2008 .

[69]  J. Rouzaud,et al.  The IMPACT Solar Wind Electron Analyzer (SWEA) , 2008 .

[70]  P. Roddy,et al.  A new satellite-borne neutral wind instrument for thermospheric diagnostics. , 2007, The Review of scientific instruments.

[71]  R. Steven Nerem,et al.  Density and Winds in the Thermosphere Deduced from Accelerometer Data , 2007 .

[72]  A. Eriksson,et al.  Electrostatic structure around spacecraft in tenuous plasmas , 2007 .

[73]  J. Lebreton,et al.  RPC-MIP: the Mutual Impedance Probe of the Rosetta Plasma Consortium , 2007 .

[74]  P. Bernath,et al.  Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005 , 2007 .

[75]  A. Viljanen,et al.  A model for estimating the relation between the Hall to Pedersen conductance ratio and ground magnetic data derived from CHAMP satellite statistics , 2007 .

[76]  H. Rosenbauer,et al.  ROMAP: Rosetta Magnetometer and Plasma Monitor , 2007 .

[77]  H. Lühr,et al.  Search for magnetically quiet CHAMP polar passes and the characteristics of ionospheric currents during the dark season , 2006 .

[78]  A. Vaivads,et al.  Magnetospheric energy budget during huge geomagnetic activity using Cluster and ground‐based data , 2006 .

[79]  D. Baker,et al.  Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations , 2006 .

[80]  H. Lühr,et al.  Field-aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events , 2006 .

[81]  Wenbin Wang,et al.  Global patterns of Joule heating in the high-latitude ionosphere , 2005 .

[82]  D. Weimer,et al.  Predicting surface geomagnetic variations using ionospheric electrodynamic models , 2005 .

[83]  Pekka Janhunen,et al.  Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellite-based statistics: towards a synthesis , 2005 .

[84]  D. Weimer,et al.  Improved Ionospheric Electrodynamic Models and Application to Calculating Joule Heating Rates , 2005 .

[85]  F. Kamalabadi,et al.  Determination of primary electron spectra from incoherent scatter radar measurements of the auroral E region , 2005 .

[86]  J. Lilensten,et al.  An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE , 2005 .

[87]  L. Blomberg,et al.  Statistics of Joule heating in the auroral zone and polar cap using Astrid-2 satellite Poynting flux , 2004 .

[88]  V. Vasyliūnas,et al.  Meaning of ionospheric Joule heating , 2004 .

[89]  J. Lyon,et al.  Coupling between the solar wind and the magnetosphere during strong driving: MHD Simulations , 2004, IEEE Transactions on Plasma Science.

[90]  Alain Hauchecorne,et al.  Solar proton events of October–November 2003: Ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat , 2004 .

[91]  Joshua Semeter,et al.  The convergence of magnetospheric energy flux in the polar atmosphere , 2004 .

[92]  J. Clemmons,et al.  Lower-hybrid cavity density depletions as a result of transverse ion acceleration localized on the gyroradius scale , 2004 .

[93]  P. Canu,et al.  The Whisper Relaxation Sounder Onboard Cluster: A Powerful Tool for Space Plasma Diagnosis1, 2 around the Earth , 2003 .

[94]  E. P. King,et al.  A low-energy charged particle distribution imager with a compact sensor for space applications , 2003 .

[95]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[96]  M. W. Dunlop,et al.  Four‐point Cluster application of magnetic field analysis tools: The Curlometer , 2002 .

[97]  H. Koskinen,et al.  Magnetospheric energy budget and the epsilon parameter , 2002 .

[98]  O. Amm Method of characteristics for calculating ionospheric electrodynamics from multisatellite and ground‐based radar data , 2002 .

[99]  Stefan Heise,et al.  Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: Initial results , 2002 .

[100]  M. Parrot,et al.  The micro-satellite DEMETER , 2002 .

[101]  Brian J. Anderson,et al.  Sensing global Birkeland currents with iridium® engineering magnetometer data , 2000 .

[102]  Robert W. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[103]  M. Lester,et al.  Letter to the editor A comparison of F-region ion velocity observations from the EISCAT Svalbard and VHF radars with irregularity drift velocity measurements from the CUTLASS Finland HF radar , 2000 .

[104]  K. Baker,et al.  Comparison of global MHD simulations with AMIE simulations for the events of May 19–20, 1996 , 1999 .

[105]  Matthew G. McHarg,et al.  Polar cap index as a proxy for hemispheric Joule heating , 1999 .

[106]  T. Fuller‐Rowell,et al.  Medium energy particle precipitation influences on the mesosphere and lower thermosphere , 1997 .

[107]  W. Deng,et al.  Dynamics Explorer 2 satellite observations and satellite track model calculations in the cusp/cleft region , 1996 .

[108]  Timothy Fuller-Rowell,et al.  On the importance of E‐field variability for Joule heating in the high‐latitude thermosphere , 1995 .

[109]  W. Deng,et al.  One‐dimensional hybrid satellite track model for the Dynamics Explorer 2 (DE 2) satellite , 1995 .

[110]  J. Slavin,et al.  Field‐aligned Poynting Flux observations in the high‐latitude ionosphere , 1994 .

[111]  Frederick J. Rich,et al.  Large-scale convection patterns observed by DMSP , 1994 .

[112]  R. Heelis,et al.  A satellite anemometer , 1992 .

[113]  H. Rishbeth,et al.  Cooling of the upper atmosphere by enhanced greenhouse gases — modelling of thermospheric and ionospheric effects , 1992 .

[114]  Raymond G. Roble,et al.  A thermosphere/ionosphere general circulation model with coupled electrodynamics , 1992 .

[115]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[116]  T. Moore,et al.  The Earth's Ionosphere. Plasma Physics and Electrodynamics. Michael C. Kelley, with contributions from Rodney A. Heelis. Academic Press, San Diego, CA, 1989. xii, 487 pp., illus. $89.95. International Geophysics Series, vol. 43. , 1990, Science.

[117]  H. Opgenoorth,et al.  Ionospheric conductivities, electric fields and currents associated with auroral substorms measured by the EISCAT radar , 1988 .

[118]  James T. Visentine,et al.  Atomic oxygen effects measurements for shuttle missions STS-8 and 41-G , 1988 .

[119]  P. Brimblecombe,et al.  Chemistry of Atmospheres. , 1986 .

[120]  T. Killeen,et al.  Thermospheric and ionospheric structure of the southern hemisphere polar cap on October 21, 1981, as determined from Dynamics Explorer 2 satellite data , 1985 .

[121]  Byung-Ho Ahn,et al.  The Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL , 1983 .

[122]  J. St.‐Maurice,et al.  Joule heating at high latitudes , 1983 .

[123]  M. Marov,et al.  Numerical modelling of the thermospheric heat budget , 1982 .

[124]  S. Sanatani,et al.  The Retarding Potential Analyzer for Dynamics Explorer-B , 1981 .

[125]  Clifford J. Cremers,et al.  A User's Guide to Vacuum Technology , 1981 .

[126]  D. Gurnett,et al.  The ISEE-C Plasma Wave Investigation , 1978, IEEE Transactions on Geoscience Electronics.

[127]  Edward J. Smith,et al.  The ISEE-1 and ISEE-2 Plasma Wave Investigation , 1978, IEEE Transactions on Geoscience Electronics.

[128]  B. J. MASON,et al.  Chemistry of the Atmosphere , 1964, Nature.

[129]  M. Rees,et al.  Auroral ionization and excitation by incident energetic electrons , 1963 .

[130]  E. Appleton,et al.  Two Anomalies in the Ionosphere , 1946, Nature.

[131]  S. Buchert Entangled Dynamos and Joule Heating in the Earth’s Ionosphere , 2019 .

[132]  Jann‐Yenq Liu,et al.  Advanced Ionospheric Probe scientific mission onboard FORMOSAT-5 satellite , 2017 .

[133]  Thomas H. Zurbuchen,et al.  Performing High-Quality Science on CubeSats , 2017 .

[134]  A. Richmond Ionospheric Electrodynamics , 2016 .

[135]  Klaus Aachen Introduction To Space Physics , 2016 .

[136]  Chio Cheng,et al.  Retarding Potential Analyzer (RPA) for Sounding Rocket , 2013 .

[137]  Robert Burt,et al.  Dynamic Ionosphere Cubesat Experiment (DICE) , 2011 .

[138]  J. Klobuchar Ionospheric Effects on GPS , 2009 .

[139]  Research Highlights , 2009, Nature Immunology.

[140]  Giacomo Sechi,et al.  Magnetic Attitude Control of the Goce Satellite , 2006 .

[141]  M. McHarg,et al.  Climatology of extreme upper atmospheric heating events , 2005 .

[142]  H. Koskinen,et al.  Ionospheric energy input as a function of solar wind parameters: global MHD simulation results , 2004 .

[143]  D. D. Wallis,et al.  Core ion interactions with BB ELF, lower hybrid, and Alfvén waves in the high‐latitude topside ionosphere , 2004 .

[144]  J. Burch Magnetospheric Imaging - The IMAGE Prime Mission , 2003 .

[145]  M. Wiltberger,et al.  Ionospheric joule heating during magnetic storms: MHD simulations , 2002 .

[146]  Arthur D. Richmond,et al.  Assimilative mapping of ionospheric electrodynamics , 1992 .

[147]  Michael C. Kelley,et al.  The earth's ionosphere , 1989 .

[148]  J. Visentine,et al.  STS-8 atomic oxygen effects experiment , 1985 .

[149]  G. Paschmann,et al.  An instrument for rapidly measuring plasma distribution functions with high resolution , 1982 .