Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust

This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (p_(max) = 19.8%), in particular in some regions of moderate hydrogen column density (N_H < 2 × 10^(21) cm^(-2)). The polarization fraction displays a large scatter at N_H below a few 10^(21) cm^(-2). There is a general decrease in the dust polarization fraction with increasing column density above N_H ≃ 1 × 10^(21) cm-2 and in particular a sharp drop above N_H ≃ 1.5 × 10^(22) cm^(-2). We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight.

G. W. Pratt | C. B. Netterfield | J. Aumont | S. Masi | J. R. Bond | L. Toffolatti | J. J. Bock | F. Pasian | B. P. Crill | W. A. Holmes | G. Savini | A. Catalano | M. Frailis | J. Borrill | A. Gruppuso | E. Hivon | L. Montier | G. Morgante | P. Natoli | F. Piacentini | M. Remazeilles | R. Stompor | A. Coulais | F. Cuttaia | L. Terenzi | O. Dor'e | M. Maris | S. Galeotta | M. Bersanelli | C. Burigana | N. Mandolesi | R. Rebolo | S. Plaszczynski | E. Pointecouteau | B. Maffei | F. Nati | L. Pagano | W. C. Jones | V. Stolyarov | G. Polenta | F. Pajot | I. Ristorcelli | F. Perrotta | V. Guillet | S. R. Hildebrandt | C. A. Oxborrow | A. Moneti | H. K. Eriksen | C. Dickinson | A. J. Banday | C. R. Lawrence | A. Mennella | P. B. Lilje | D. L. Harrison | B. D. Wandelt | E. Falgarone | J.-F. Cardoso | K. Ganga | G. Lagache | P. Vielva | G. Helou | J. Dunkley | N. Aghanim | X. Dupac | J. P. Rachen | A. Zacchei | D. Maino | L. Perotto | M. Douspis | C. Rosset | F.-X. D'esert | J. F. Mac'ias-P'erez | J. Delabrouille | S. Matarrese | L. Valenziano | A. Benoit-L'evy | A. Zonca | T. S. Kisner | M. Arnaud | M. Tomasi | A. H. Jaffe | O. Forni | K. Ferriere | F. Levrier | H. C. Chiang | S. Donzelli | F. Couchot | M. Juvela | D. J. Marshall | F. Boulanger | J. P. Leahy | P. M. Lubin | D. Novikov | P. Mazzotta | A. Gregorio | R. B. Barreiro | B. Rusholme | D. Scott | C. Renault | D. Munshi | R. Keskitalo | E. Franceschi | A. Hornstrup | T. Riller | L. Danese | C. Baccigalupi | L. Mendes | J. M. Diego | S. Ricciardi | W. T. Reach | M. Kunz | H. Kurki-Suonio | L. Popa | F. Pasian | L. Valenziano | H. Kurki-Suonio | P. Lilje | N. Aghanim | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | M. Frailis | A. Zacchei | S. Colombi | A. Melchiorri | J. Rubino-Mart'in | O. Forni | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | M. Hobson | A. Lasenby | B. Wandelt | J. Dunkley | F. Bouchet | S. Matarrese | J. Borrill | P. Bernardis | A. Jaffe | C. Netterfield | R. Stompor | J. Bond | B. Crill | K. Ganga | W. Jones | S. Masi | F. Piacentini | S. Prunet | M. Juvela | J. Diego | A. Benoit-Lévy | R. Rebolo | A. Coulais | A. Gregorio | P. Christensen | M. Ashdown | C. Lawrence | B. Rusholme | G. Helou | R. Davis | T. Kisner | F. Atrio-Barandela | T. Jaffe | H. Eriksen | F. Couchot | S. Plaszczynski | W. Reach | F. Boulanger | R. Davies | C. Dickinson | J. Leahy | T. Pearson | P. Ade | C. Armitage-Caplan | M. Arnaud | J. Aumont | E. Battaner | J. Bernard | M. Bersanelli | P. Bielewicz | C. Burigana | R. C. Butler | A. Catalano | A. Chamballu | R. Chary | H. Chiang | L. Colombo | A. Curto | F. Cuttaia | L. Danese | A. Rosa | G. Zotti | J. Delabrouille | F. D'esert | S. Donzelli | O. Dor'e | X. Dupac | E. Falgarone | F. Finelli | A. Fraisse | E. Franceschi | S. Galeotta | M. Giard | Y. Giraud-H'eraud | J. Gonz'alez-Nuevo | K. M. G'orski | A. Gruppuso | D. Harrison | C. Hern'andez-Monteagudo | S. Hildebrandt | W. Holmes | A. Hornstrup | K. Huffenberger | E. Keihanen | R. Keskitalo | R. Kneissl | J. Knoche | G. Lagache | A. Lahteenmaki | J. Lamarre | R. Leonardi | M. Liguori | M. Linden-Vørnle | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | B. Maffei | D. Maino | N. Mandolesi | M. Maris | D. Marshall | P. Martin | E. Mart'inez-Gonz'alez | P. Mazzotta | L. Mendes | A. Mennella | M. Migliaccio | M. Miville-Deschênes | A. Moneti | L. Montier | D. Mortlock | D. Munshi | P. Naselsky | F. Nati | P. Natoli | F. Noviello | D. Novikov | I. Novikov | L. Pagano | F. Pajot | R. Paladini | D. Paoletti | O. Perdereau | L. Perotto | F. Perrotta | M. Piat | D. Pietrobon | E. Pointecouteau | G. Polenta | L. Popa | G. Pratt | J. Puget | J. Rachen | M. Remazeilles | C. Renault | S. Ricciardi | T. Riller | I. Ristorcelli | G. Rocha | C. Rosset | G. Roudier | M. Sandri | G. Savini | L. Spencer | R. Sudiwala | D. Sutton | A. Suur-Uski | J. Sygnet | J. Tauber | L. Terenzi | L. Toffolatti | M. Tomasi | M. Tristram | M. Tucci | G. Umana | J. Valiviita | B. Tent | P. Vielva | F. Villa | L. Wade | A. Zonca | J. Murphy | V. Stolyarov | J. Cardoso | C. Combet | T. Ghosh | F. Levrier | E. M. G. D. Pino | M. Alves | A. Bracco | A. Magalhães | K. Ferrière | D. Arzoumanian | V. Guillet | D. Alina | F. Villa | M. Sandri | M. Ashdown | K. Benabed | J.-P. Bernard | P. Bielewicz | F. R. Bouchet | A. Bracco | L. P. L. Colombo | C. Combet | A. Curto | R. J. Davis | P. de Bernardis | A. de Rosa | G. de Zotti | T. A. Ensslin | F. Finelli | A. A. Fraisse | T. Ghosh | M. Giard | J. Gonz'alez-Nuevo | F. K. Hansen | E. Keihanen | A. Lahteenmaki | J.-M. Lamarre | A. Lasenby | M. Liguori | M. L'opez-Caniego | P. G. Martin | E. Mart'inez-Gonz'alez | A. Melchiorri | M. Migliaccio | M.-A. Miville-Deschenes | P. Naselsky | D. Paoletti | O. Perdereau | J.-L. Puget | M. Reinecke | G. Rocha | G. Roudier | J. A. Rubino-Mart'in | A.-S. Suur-Uski | J. A. Tauber | M. Tristram | J. Valiviita | P. R. Christensen | Planck Collaboration P. A. R. Ade | C. Armitage-Caplan | F. Atrio-Barandela | E. Battaner | A. Chamballu | S. Colombi | R. D. Davies | M. Hobson | K. M. Huffenberger | T. R. Jaffe | R. Kneissl | J. Knoche | R. Leonardi | D. Mortlock | J. A. Murphy | F. Noviello | I. Novikov | M. Piat | D. Pietrobon | S. Prunet | L. D. Spencer | R. Sudiwala | D. Sutton | J.-F. Sygnet | M. Tucci | B. Van Tent | L. A. Wade | R.-R. Chary | Y. Giraud-H'eraud | C. Hern'andez-Monteagudo | M. Linden-Vornle | T. J. Pearson | R. Paladini | G. Umana | M. I. R. Alves | F. Poidevin | D. Arzoumanian | E. M. de Gouveia Dal Pino | A. M. Magalhaes | D. Alina | F. Poidevin | F. Lévrier | J. Bock | D. Scott | P. Christensen | D. Scott | J. Murphy | D. Scott | G. Rocha | J. Murphy | J. Bond | D. Harrison | C. Lawrence | D. Marshall | C. Rosset | A.-S. Suur-Uski

[1]  P. Martin On Interstellar Grain Alignment by a Magnetic Field , 1971 .

[2]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[3]  J. Stil,et al.  A ROTATION MEASURE IMAGE OF THE SKY , 2009 .

[4]  W. Holland,et al.  First Observations of the Magnetic Field Geometry in Prestellar Cores , 2000, astro-ph/0006069.

[5]  Jason L. Quinn,et al.  Bayesian analysis of polarization measurements , 2012, 1202.0299.

[6]  G. W. Pratt,et al.  Astronomy & Astrophysics manuscript no. HFI˙Transfer˙Function˙and˙Beams c ○ ESO 2013 , 2013 .

[7]  John E. Vaillancourt Polarized Emission from Interstellar Dust , 2007 .

[8]  F. D'esert,et al.  Model of the polarized foreground diffuse Galactic emissions from 33 to 353 GHz , 2012, 1204.3659.

[9]  R. B. Barreiro,et al.  Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps , 2011, 1101.2034.

[10]  G. Farrar,et al.  THE GALACTIC MAGNETIC FIELD , 1977, 1210.7820.

[11]  Max Tegmark,et al.  How to measure CMB polarization power spectra without losing information , 2000, astro-ph/0012120.

[12]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996 .

[13]  T. Ensslin,et al.  Radio observational constraints on Galactic 3D-emission models , 2007, 0711.1572.

[14]  C. B. Netterfield,et al.  Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy , 2011, 1101.2029.

[15]  Jessie L. Dotson,et al.  350 μm POLARIMETRY FROM THE CALTECH SUBMILLIMETER OBSERVATORY , 2010, 1001.2790.

[16]  T. L. Landecker,et al.  An absolutely calibrated survey of polarized emission from the northern sky at 1.4 GHz. Observations , 2005, astro-ph/0510456.

[17]  M. V. Fernandes,et al.  Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S , 2014, 1405.0488.

[18]  R. B. Barreiro,et al.  Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance , 2011, 1101.2039.

[19]  Bruce T. Draine,et al.  POLARIZED FAR-INFRARED AND SUBMILLIMETER EMISSION FROM INTERSTELLAR DUST , 2008, 0809.2094.

[20]  S. Poppi,et al.  Galactic interstellar turbulence across the southern sky seen through spatial gradients of the polarization vector , 2014, 1404.6077.

[21]  R. Ekers,et al.  Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients , 2011, Nature.

[22]  A. Z. Dolginov,et al.  Orientation of cosmic dust grains , 1976 .

[23]  C. A. Oxborrow,et al.  Planck 2013 results - VIII. HFI photometric calibration and mapmaking , 2013, 1303.5069.

[24]  R. B. Barreiro,et al.  Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.01583.

[25]  J. Brown,et al.  Rotation Measures of Extragalactic Sources behind the Southern Galactic Plane: New Insights into the Large-Scale Magnetic Field of the Inner Milky Way , 2007, 0704.0458.

[26]  G. Kowal,et al.  Studies of Regular and Random Magnetic Fields in the ISM: Statistics of Polarization Vectors and the Chandrasekhar-Fermi Technique , 2008, 0801.0279.

[27]  C. A. Oxborrow,et al.  Planck 2013 results. XIV. Zodiacal emission , 2013, 1303.5074.

[28]  P. Vielva,et al.  Limits on the detectability of the CMB B-mode polarization imposed by foregrounds , 2004, astro-ph/0411567.

[29]  Alyssa A. Goodman,et al.  Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus , 1990 .

[30]  P. Gerakines,et al.  A review of interstellar polarization properties and recent measurements toward the Chamaeleon I and Taurus dark clouds , 1995 .

[31]  J. Aumont,et al.  The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths , 2012, 1207.3675.

[32]  DEPOLARIZATION CANALS AND INTERSTELLAR TURBULENCE , 2006, astro-ph/0602536.

[33]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[34]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[35]  J. Bregman,et al.  Understanding radio polarimetry. III. Interpreting the IAU/IEEE definitions of the Stokes parameters. , 1996 .

[36]  C. A. Oxborrow,et al.  Planck2013 results. VI. High Frequency Instrument data processing , 2013, Astronomy &amp; Astrophysics.

[37]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[38]  G. W. Pratt,et al.  Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence , 2014, 1405.0872.

[39]  A. Quirrenbach,et al.  H.E.S.S. observations of the Crab during its March 2013 GeV gamma-ray flare. , 2013, 1311.3187.

[40]  P. Reich,et al.  A radio continuum survey of the southern sky at 1420 MHz - The atlas of contour maps , 2001 .

[41]  A. Banday,et al.  Modelling the Galactic magnetic field on the plane in two dimensions , 2009, 0907.3994.

[42]  Naomi McClure-Griffiths,et al.  MODELING THE MAGNETIC FIELD IN THE GALACTIC DISK USING NEW ROTATION MEASURE OBSERVATIONS FROM THE VERY LARGE ARRAY , 2010, 1012.2938.

[43]  A. Lazarian,et al.  Radiative torque alignment: essential physical processes , 2007, 0707.3645.

[44]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[45]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[46]  A. Chrysostomou,et al.  Magnetic fields in massive star-forming regions , 2007, 0709.0256.

[47]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[48]  R. B. Barreiro,et al.  Planck 2013 results. III. LFI systematic uncertainties , 2013, 1303.5064.

[49]  T. Maciaszek,et al.  Planck pre-launch status: The HFI instrument, from specification to actual performance , 2010 .

[50]  E. Battaner,et al.  Constraining the regular Galactic magnetic field with the 5-year WMAP polarization measurements at 22 GHz , 2010, 1006.5573.

[51]  K. Newton-McGee,et al.  DERIVING THE GLOBAL STRUCTURE OF THE GALACTIC MAGNETIC FIELD FROM FARADAY ROTATION MEASURES OF EXTRAGALACTIC SOURCES , 2011, 1103.0814.

[52]  G. W. Pratt,et al.  Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization , 2014, 1405.0874.

[53]  N. Ysard,et al.  Separation of anomalous and synchrotron emissions using WMAP polarization data , 2008, 0802.3345.

[54]  S. Johnston,et al.  The pulsar/supernova remnant connection , 1995 .

[55]  A. Lazarian Magnetic fields via polarimetry: progress on grain alignment theory , 2002, astro-ph/0208487.

[56]  A. Banday,et al.  Joint 3D modelling of the polarized Galactic synchrotron and thermal dust foreground diffuse emission , 2010, 1003.4450.

[57]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[58]  M. Halpern,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission , 2008 .

[59]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[60]  T. Onishi,et al.  Dark gas in the solar neighborhood from extinction data , 2012, 1205.3384.

[61]  P. Reich,et al.  A fully sampled λ21 cm linear polarization survey of the southern sky , 2008 .

[62]  S. Plaszczynski,et al.  Polarization measurement analysis - I. Impact of the full covariance matrix on polarization fraction and angle measurements , 2014, 1406.6536.

[63]  A. Taylor,et al.  ANTISYMMETRY IN THE FARADAY ROTATION SKY CAUSED BY A NEARBY MAGNETIZED BUBBLE , 2010, 1011.0341.

[64]  G. Kowal,et al.  MAGNETIC FIELD COMPONENTS ANALYSIS OF THE SCUPOL 850 μm POLARIZATION DATA CATALOG , 2013 .

[65]  H. V. Hulst Observing the Galactic Magnetic Field , 1967 .

[66]  Jessie L. Dotson,et al.  Far-Infrared Polarimetry of Galactic Clouds from the Kuiper Airborne Observatory , 2000 .

[67]  G. Farrar,et al.  A NEW MODEL OF THE GALACTIC MAGNETIC FIELD , 2012, 1204.3662.

[68]  G. W. Pratt,et al.  Planck intermediate results - XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes , 2014, 1409.5738.

[69]  W. Stein Infrared radiation from interstellar grains. , 1966 .

[70]  A. J. Banday,et al.  Connecting Synchrotron, Cosmic Rays, and Magnetic Fields in the Plane of the Galaxy , 2011, 1105.5885.

[71]  Jessie L. Dotson,et al.  DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. II. , 2008, 0909.5227.

[72]  Di Li,et al.  THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION , 2011, 1108.0410.

[73]  P. Bastien,et al.  MAGNETIC FIELD STRUCTURES AND TURBULENT COMPONENTS IN THE STAR-FORMING MOLECULAR CLOUDS OMC-2 AND OMC-3 , 2010, 1003.5596.

[74]  S. Hildebrandt,et al.  A Characterization of the Diffuse Galactic Emissions in the Anticenter of the Galaxy , 2012, 1212.6854.

[75]  M. V. Fernandes,et al.  Flux upper limits for 47 AGN observed with H.E.S.S. in 2004−2011 , 2014, 1402.2332.

[76]  Brenda C. Matthews,et al.  THE LEGACY OF SCUPOL: 850 μm IMAGING POLARIMETRY FROM 1997 TO 2005 , 2009 .

[77]  Christine D. Wilson,et al.  Magnetic Fields in Star-forming Molecular Clouds. I. The First Polarimetry of OMC-3 in Orion A , 1999, astro-ph/9911148.

[78]  C. Heiles The Local Direction and Curvature of the Galactic Magnetic Field Derived from Starlight Polarization , 1996 .

[79]  U. California,et al.  Predictions of polarized dust emission from interstellar clouds: spatial variations in the efficiency of radiative torque alignment , 2009, 0901.0831.

[80]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains. II. Grain Alignment , 1996, astro-ph/9611149.

[81]  A statistical analysis of a Galactic all sky survey at 1.4-GHz , 2006, astro-ph/0607038.

[82]  B. M. Gaensler,et al.  PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS , 2011, 1111.3544.

[83]  P. Fosalba,et al.  Temperature and polarization angular power spectra of Galactic dust radiation at 353 GHz as measured by Archeops , 2005, astro-ph/0501427.

[84]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[85]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[86]  Donald P. Cox,et al.  THE THREE-PHASE INTERSTELLAR MEDIUM REVISITED , 2005 .

[87]  F. Pasian,et al.  Planck pre-launch status: Design and description of the Low Frequency Instrument , 2010, 1001.3321.

[88]  J. Hough,et al.  The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization , 2007, 0711.2536.

[89]  L. Toffolatti,et al.  Planck early results. III. First assessment of the Low Frequency , 2011, 1101.2038.

[90]  F. O. Alves,et al.  DETAILED INTERSTELLAR POLARIMETRIC PROPERTIES OF THE PIPE NEBULA AT CORE SCALES , 2010, 1008.5327.

[91]  P. Encrenaz,et al.  The relation between carbon monoxide emission and visual extinction in cloud L134 , 1976 .

[92]  L. Molnar,et al.  R band polarimetry of Cygnus OB2: Implications for the magnetic field geometry and polarization models , 1993 .

[93]  J. Brown,et al.  Rotation Measures of Compact Sources in the Canadian Galactic Plane Survey , 2003 .

[94]  R. B. Barreiro,et al.  Planck 2013 results. V. LFI calibration , 2013, 1303.5066.

[95]  C. A. Oxborrow,et al.  Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible , 2014, 1405.0873.

[96]  L. Montier,et al.  Polarization measurements analysis II. Best estimators of polarization fraction and angle , 2014, 1407.0178.

[97]  M. Alves Diffuse Radio Recombination Line Emission on the Galactic plane , 2010 .

[98]  T. L. Landecker,et al.  ROTATION MEASURE SYNTHESIS OF GALACTIC POLARIZED EMISSION WITH THE DRAO 26-m TELESCOPE , 2010, 1002.2312.

[99]  J. Brown,et al.  The Outer Scale of Turbulence in the Magnetoionized Galactic Interstellar Medium , 2008, 0802.2740.