Integrating correlation between traits improves spatial predictions of plant functional composition

R. O. Wüest (http://orcid.org/0000-0001-6047-1945) (rafael.wueest@gmail.com), T. Münkemüller, S. Lavergne, L. J. Pollock and W. Thuiller (orcid.org/0000-0002-5388-5274), Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), FR-38000 Grenoble, France. Present address for ROW: Swiss Federal Research Institute WSL, Forest Resources and Managment, Zürcherstrasse 11, CH-8903 Birmensdorf, Switzerland.

[1]  Ian J. Wright,et al.  Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis , 2012 .

[2]  C. Violle,et al.  Let the concept of trait be functional , 2007 .

[3]  J. Bengtsson,et al.  Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation , 2015, Oecologia.

[4]  BiolFlor — a new plant‐trait database as a tool for plant invasion ecology , 2004 .

[5]  Sandra Lavorel,et al.  How fundamental plant functional trait relationships scale‐up to trade‐offs and synergies in ecosystem services , 2012 .

[6]  Daniel Simberloff,et al.  Community Ecology: Is It Time to Move On? , 2004, The American Naturalist.

[7]  S. Lavorel,et al.  Incorporating plant functional diversity effects in ecosystem service assessments , 2007, Proceedings of the National Academy of Sciences.

[8]  Renée M. Bekker,et al.  Life-history traits of the Northwest European flora: The LEDA database , 2003 .

[9]  James s. Clark,et al.  Why species tell more about traits than traits about species: predictive analysis. , 2016, Ecology.

[10]  Wim A. Ozinga,et al.  Selecting traits that explain species–environment relationships: a generalized linear mixed model approach , 2013 .

[11]  J. Lawton Are there general laws in ecology , 1999 .

[12]  Francis K. C. Hui,et al.  boral – Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in r , 2016 .

[13]  Karl J. Niklas,et al.  Influence of Tissue Density-specific Mechanical Properties on the Scaling of Plant Height , 1993 .

[14]  Eric Garnier,et al.  PLANT FUNCTIONAL MARKERS CAPTURE ECOSYSTEM PROPERTIES DURING SECONDARY SUCCESSION , 2004 .

[15]  J. P. Grime,et al.  The plant traits that drive ecosystems: Evidence from three continents , 2004 .

[16]  David J. Harris Generating realistic assemblages with a joint species distribution model , 2015 .

[17]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[18]  Sandra Lavorel,et al.  Using plant functional traits to understand the landscape distribution of multiple ecosystem services , 2011 .

[19]  J. P. Grime,et al.  Benefits of plant diversity to ecosystems: immediate, filter and founder effects , 1998 .

[20]  David I. Warton,et al.  The fourth‐corner solution – using predictive models to understand how species traits interact with the environment , 2014 .

[21]  Jane Elith,et al.  What do we gain from simplicity versus complexity in species distribution models , 2014 .

[22]  Wilfried Thuiller,et al.  Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps , 2013 .

[23]  Laura J. Pollock,et al.  Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM) , 2014 .

[24]  A. Ives,et al.  The statistical need to include phylogeny in trait‐based analyses of community composition , 2017 .

[25]  M. Hulme,et al.  A high-resolution data set of surface climate over global land areas , 2002 .

[26]  Alastair H. Fitter,et al.  The ecological flora database. , 1994 .

[27]  S. Lavorel,et al.  Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail , 2002 .

[28]  Otso Ovaskainen,et al.  Making more out of sparse data: hierarchical modeling of species communities. , 2011, Ecology.

[29]  Francis K. C. Hui,et al.  So Many Variables: Joint Modeling in Community Ecology. , 2015, Trends in ecology & evolution.

[30]  Sandra Lavorel,et al.  Ecological mechanisms underpinning climate adaptation services , 2015, Global change biology.

[31]  Kai Zhu,et al.  More than the sum of the parts: forest climate response from joint species distribution models. , 2014, Ecological applications : a publication of the Ecological Society of America.

[32]  Fabien Quétier,et al.  Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services , 2014, Proceedings of the National Academy of Sciences.

[33]  Eric Garnier,et al.  Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland , 2012 .

[34]  B. Enquist,et al.  Rebuilding community ecology from functional traits. , 2006, Trends in ecology & evolution.

[35]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[36]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[37]  W. Thuiller,et al.  Effects of species' similarity and dominance on the functional and phylogenetic structure of a plant meta-community. , 2015, Ecology.

[38]  Mark Westoby,et al.  A leaf-height-seed (LHS) plant ecology strategy scheme , 1998, Plant and Soil.

[39]  William K. Morris,et al.  The role of functional traits in species distributions revealed through a hierarchical model , 2012 .

[40]  Wilfried Thuiller,et al.  From species distributions to meta-communities. , 2015, Ecology letters.

[41]  Wilfried Thuiller,et al.  Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L. , 2013, Functional ecology.

[42]  P. Bénichou,et al.  Prix Norbert Gerbier 1986: prise en compte de la topographie pour la cartographie des champs pluviométriques statistiques , 1987 .

[43]  M. Uriarte,et al.  Do community-weighted mean functional traits reflect optimal strategies? , 2016, Proceedings of the Royal Society B: Biological Sciences.

[44]  Ingolf Kühn,et al.  Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. , 2006, The New phytologist.

[45]  L. Buisson,et al.  Toward a loss of functional diversity in stream fish assemblages under climate change , 2013, Global change biology.

[46]  S. Wright,et al.  The global spectrum of plant form and function , 2015, Nature.

[47]  John E. Kutzbach,et al.  Projected distributions of novel and disappearing climates by 2100 AD , 2006, Proceedings of the National Academy of Sciences.

[48]  Antoine Guisan,et al.  Spatial modelling of biodiversity at the community level , 2006 .

[49]  Darren T. Drewry,et al.  The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing t , 2012 .

[50]  L. Poorter,et al.  Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. , 2009, The New phytologist.

[51]  Jarrod Had MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package , 2010 .