Mutually orthogonal Latin squares based on general linear groups

Given a finite group G, how many squares are possible in a set of mutually orthogonal Latin squares based on G? This is a question that has been answered for a few classes of groups only, and for no nonsoluble group. For a nonsoluble group G, we know that there exists a pair of orthogonal Latin squares based on G. We can improve on this lower bound when G is one of GL(2, q) or SL(2, q), q a power of 2, q ≠ 2, or is obtained from these groups using quotient group constructions. For nonsoluble groups, that is the extent of our knowledge. We will extend these results by deriving new lower bounds for the number of squares in a set of mutually orthogonal Latin squares based on the group GL(n, q), q a power of 2, q ≠ 2.