Chromium(VI) removal by maghemite nanoparticles

[1]  Diannan Lu,et al.  Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles , 2012 .

[2]  J. Bhattacharya,et al.  Removal of Cu(II), Zn(II) and Pb(II) from water using microwave-assisted synthesized maghemite nanotubes , 2012 .

[3]  Treavor H. Boyer,et al.  Equilibrium and intra-particle diffusion of stabilized landfill leachate onto micro- and meso-porous activated carbon. , 2012, Water research.

[4]  P. Li,et al.  Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering , 2011 .

[5]  E. Yanful,et al.  Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. , 2010, Journal of environmental management.

[6]  M. Ranjbar,et al.  One-step synthesis of maghemite (γ-Fe2O3) nano-particles by wet chemical method , 2010 .

[7]  J. Xiao,et al.  Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. , 2010, The Science of the total environment.

[8]  Dong Liu,et al.  Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. , 2010, Journal of hazardous materials.

[9]  W. Daud,et al.  Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review , 2009 .

[10]  B. Hameed,et al.  Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. , 2009, Journal of hazardous materials.

[11]  A. Fotovat,et al.  A Case Study: Chromium Concentration and its Species in a Calcareous Soil Affected by Leather Industries Effluents , 2008 .

[12]  Guohua Chen,et al.  Comparative study of various magnetic nanoparticles for Cr(VI) removal , 2007 .

[13]  S. Banerjee,et al.  Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. , 2007, Journal of hazardous materials.

[14]  A. Ofomaja Kinetics and mechanism of methylene blue sorption onto palm kernel fibre , 2007 .

[15]  J. T. Mayo,et al.  Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals , 2006, Science.

[16]  Laura Schewel,et al.  The contemporary anthropogenic chromium cycle. , 2006, Environmental science & technology.

[17]  I. D. Mall,et al.  Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses , 2006 .

[18]  Y. Ho,et al.  Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution , 2005 .

[19]  M. Özacar,et al.  Adsorption of metal complex dyes from aqueous solutions by pine sawdust. , 2005, Bioresource technology.

[20]  Guohua Chen,et al.  Removal of Cr(VI) by magnetite , 2004 .

[21]  N. S. McIntyre,et al.  Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .

[22]  M. Bekbolet,et al.  Evaluation of humic acid, chromium (VI) and TiO2 ternary system in relation to adsorptive interactions , 2004 .

[23]  J. Hu Removal of Cr ( VI ) by magnetite nanoparticle , 2004 .

[24]  I. Lo,et al.  Removal of Cr(VI) by magnetite nanoparticle. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[25]  E. Tombácz,et al.  The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite , 2003 .

[26]  J. Rohrer,et al.  Determination of hexavalent chromium at the level of the California Public Health Goal by ion chromatography. , 2002, Journal of chromatography. A.

[27]  G. Quievryn,et al.  Carcinogenic chromium(VI) induces cross-linking of vitamin C to DNA in vitro and in human lung A549 cells. , 2002, Biochemistry.

[28]  W. Ngah,et al.  Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads , 2002 .

[29]  R. N. Shah,et al.  Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm. , 2001, Analytical chemistry.

[30]  M. Henriot,et al.  ATOMIC-OXYGEN-ASSISTED MBE GROWTH OF ALPHA -FE2O3ON ALPHA -AL2O3(0001) : METASTABLE FEO(111)-LIKE PHASE AT SUBNANOMETER THICKNESSES , 1999 .

[31]  A. Vermeer,et al.  Metal Ion Adsorption to Complexes of Humic Acid and Metal Oxides: Deviations from the Additivity Rule , 1999 .

[32]  J. Martín-Martínez,et al.  Chromium(VI) removal with activated carbons , 1995 .

[33]  Kun She Low,et al.  Removal of chromium from aqueous solution , 1995 .

[34]  C. Palmer,et al.  Reduction of Cr(VI) in the Presence of Excess Soil Fulvic Acid. , 1995, Environmental science & technology.

[35]  J. McCarthy,et al.  Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. , 1994, Environmental science & technology.

[36]  B. E. Reed,et al.  MODELING CADMIUM ADSORPTION BY ACTIVATED CARBON USING THE LANGMUIR AND FREUNDLICH ISOTHERM EXPRESSIONS , 1993 .

[37]  W. Mertz Chromium in human nutrition: a review. , 1993, The Journal of nutrition.

[38]  P. T. Crisp,et al.  Effect of pH on chromium(VI) species in solution. , 1984, Talanta.

[39]  R. E. Treybal Mass-Transfer Operations , 1955 .