Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise

The PLANCK satellite will observe the full sky at nine frequencies from 30 to 857 GHz. Temperature and polarization frequency maps made from these observations are prime deliverables of the PLANCK mission. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. We simulated one-year long observations of four 30 GHz detectors. The simulated timestreams contained cosmic microwave background (CMB) signal, foreground components (both galactic and extra-galactic), instrument noise (correlated and white), and the four instrument systematic effects. We made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. We also compared the maps of different mapmaking codes to see how they performed. We used five mapmaking codes (two destripers and three optimal codes). None of our mapmaking codes makes any attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. This is a complicated smoothing, because each map pixel has its own effective beam. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual root-mean-square) is baseline length. All optimal codes give essentially indistinguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough (Madam). For longer baselines destripers (Springtide and Madam) require less computing resources but deliver a noisier map.

[1]  J. G. Bartlett,et al.  Catalog extraction in SZ cluster surveys : a matched filter approach , 2006, astro-ph/0602424.

[2]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[3]  J. Borrill,et al.  Making sky maps from Planck data , 2006, Astronomy & Astrophysics.

[4]  G. Efstathiou Effects of destriping errors on cosmic microwave background polarization power spectra and pixel noise covariances , 2007 .

[5]  Nicola Vittorio,et al.  ROMA: a map-making algorithm for polarised CMB data sets , 2005, astro-ph/0502142.

[6]  Davide Maino,et al.  Removing 1/f noise stripes in cosmic microwave background anisotropy observations , 2002 .

[7]  Martin Reinecke,et al.  A simulation pipeline for the Planck mission , 2006 .

[8]  A. Ludwig The definition of cross polarization , 1973 .

[9]  G. Morgante,et al.  PLANCK: Systematic effects induced by periodic fluctuations of arbitrary shape , 2001, astro-ph/0111078.

[10]  Anthony Challinor,et al.  Systematic errors in cosmic microwave background polarization measurements , 2007 .

[11]  J. Borrill,et al.  Comparison of map-making algorithms for CMB experiments , 2005, astro-ph/0501504.

[12]  Krzysztof M. Gorski,et al.  The HEALPix Primer , 1999, astro-ph/9905275.

[13]  S. Borgani,et al.  On determining the cluster abundance normalization , 2003 .

[14]  Michael Seiffert,et al.  1=f noise and other systematic effects in the Planck-LFI radiometers , 2002 .

[15]  C. Burigana,et al.  A maximum likelihood approach to the destriping technique , 2004 .

[16]  T. Poutanen,et al.  Madam– a map-making method for CMB experiments , 2005 .

[17]  E. Hivon,et al.  The Planck-LFI instrument: analysis of the 1/f noise and implications for the scanning strategy , 1999 .

[18]  D. Yvon,et al.  Mirage: A new iterative map-making code for CMB experiments , 2005 .

[19]  J. Curran,et al.  SUMSS: a wide-field radio imaging survey of the southern sky – II. The source catalogue , 2003, astro-ph/0303188.

[20]  Jacques Delabrouille,et al.  Beam mismatch effects in Cosmic Microwave Background polarization measurements , 2004, astro-ph/0410544.

[21]  An iterative destriping technique for diffuse background polarization data , 2003, astro-ph/0302276.

[22]  J. Delabrouille,et al.  Analysis of the accuracy of a destriping method for future cosmic microwave background mapping with the PLANCK SURVEYOR satellite , 1998 .

[23]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[24]  H. K. Eriksen,et al.  Power Spectrum Estimation from High-Resolution Maps by Gibbs Sampling , 2004 .

[25]  J. Kaplan,et al.  Destriping of polarized data in a CMB mission with a circular scanning strategy , 2000 .

[26]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[27]  O. Dor'e,et al.  MAPCUMBA: A fast iterative multi-grid map-making algorithm for CMB experiments , 2001, astro-ph/0101112.

[28]  Effects of destriping errors on estimates of the CMB power spectrum , 2004, astro-ph/0407571.

[29]  J. Borrill,et al.  Making maps from Planck LFI 30 GHz data , 2007, astro-ph/0702483.

[30]  X. DupacJ. Tauber Scanning strategy for mapping the Cosmic Microwave Background anisotropies with Planck , 2005 .

[31]  P. Natoli,et al.  A Map-Making algorithm for the Planck Surveyor , 2001 .

[32]  Carlo Burigana,et al.  Beam deconvolution in noisy CMB maps , 2003, astro-ph/0304326.

[33]  John C. Mather,et al.  Optical, infrared, and millimeter space telescopes : 21-25 June 2004, Glasgow, Scotland, United Kingdom , 2004 .

[34]  P. Natoli,et al.  In-Flight Main Beam Reconstruction for Planck-LFI , 2000 .

[35]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.