Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process

[1]  A. Wakamiya,et al.  Title Photoelectronic Responses in Solution-Processed Perovskite CH[3]NH[3]PbI[3] Solar Cells Studied by Photoluminescence and Photoabsorption Spectroscopy , 2018 .

[2]  Y. Ishitani,et al.  Population decay time and distribution of exciton states analyzed by rate equations based on theoretical phononic and electron-collisional rate coefficients , 2017 .

[3]  Jay B. Patel,et al.  Photon Reabsorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite. , 2017, Nano letters.

[4]  L. Herz Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .

[5]  M. Johnston,et al.  Band‐Tail Recombination in Hybrid Lead Iodide Perovskite , 2017 .

[6]  Xin Zhao,et al.  Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite , 2017, Nature communications.

[7]  Jay B. Patel,et al.  Influence of Interface Morphology on Hysteresis in Vapor‐Deposited Perovskite Solar Cells , 2017 .

[8]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[9]  V. Bulović,et al.  Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. , 2017, Nature Materials.

[10]  Luis M. Pazos-Outón,et al.  Research data supporting: "Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling" , 2016 .

[11]  Thomas Kirchartz,et al.  Impact of Photon Recycling on the Open-Circuit Voltage of Metal Halide Perovskite Solar Cells , 2016 .

[12]  A. Petrozza,et al.  Research Update: Luminescence in lead halide perovskites , 2016 .

[13]  David S. Ginger,et al.  Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation , 2016 .

[14]  T. P. Gujar,et al.  Effect of Thermal and Structural Disorder on the Electronic Structure of Hybrid Perovskite Semiconductor CH3NH3PbI3. , 2016, The journal of physical chemistry letters.

[15]  T. P. Gujar,et al.  Reversible Laser‐Induced Amplified Spontaneous Emission from Coexisting Tetragonal and Orthorhombic Phases in Hybrid Lead Halide Perovskites , 2016 .

[16]  Feliciano Giustino,et al.  Electron–phonon coupling in hybrid lead halide perovskites , 2016, Nature Communications.

[17]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[18]  Ayan A. Zhumekenov,et al.  Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length , 2016 .

[19]  A. Walsh,et al.  Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells , 2016, 1604.04500.

[20]  Feliciano Giustino,et al.  EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions , 2016, Comput. Phys. Commun..

[21]  M. Johnston,et al.  Effect of Structural Phase Transition on Charge-Carrier Lifetimes and Defects in CH3NH3SnI3 Perovskite. , 2016, The journal of physical chemistry letters.

[22]  Juliane Kniepert,et al.  Charge carrier recombination dynamics in perovskite and polymer solar cells , 2016 .

[23]  P. Kamat,et al.  Spatially Non-uniform Trap State Densities in Solution-Processed Hybrid Perovskite Thin Films. , 2016, The journal of physical chemistry letters.

[24]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[25]  N. Park,et al.  Organic-inorganic halide perovskite photovoltaics : from fundamentals to device architectures , 2016 .

[26]  Tsutomu Miyasaka,et al.  Organic-Inorganic Halide Perovskite Photovoltaics , 2016 .

[27]  M. Johnston,et al.  Charge‐Carrier Dynamics and Mobilities in Formamidinium Lead Mixed‐Halide Perovskites , 2015, Advanced materials.

[28]  Kai Zhu,et al.  Comparison of Recombination Dynamics in CH3NH3PbBr3 and CH3NH3PbI3 Perovskite Films: Influence of Exciton Binding Energy. , 2015, The journal of physical chemistry letters.

[29]  L. Tan,et al.  Rashba Spin-Orbit Coupling Enhanced Carrier Lifetime in CH₃NH₃PbI₃. , 2015, Nano letters.

[30]  Jay B. Patel,et al.  Vibrational Properties of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra , 2015 .

[31]  M. Mainas,et al.  Absorption F-sum rule for the exciton binding energy in methylammonium lead halide perovskites. , 2015, The journal of physical chemistry letters.

[32]  F. Giustino,et al.  GW Band Structures and Carrier Effective Masses of CH3NH3PbI3 and Hypothetical Perovskites of the Type APbI3: A = NH4, PH4, AsH4, and SbH4 , 2015 .

[33]  J. Luther,et al.  Observation of a hot-phonon bottleneck in lead-iodide perovskites , 2015, Nature Photonics.

[34]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[35]  A. Goriely,et al.  Plasmonic‐Induced Photon Recycling in Metal Halide Perovskite Solar Cells , 2015 .

[36]  G. Lanzani,et al.  Role of Microstructure in the Electron-Hole Interaction of Hybrid Lead-Halide Perovskites , 2015, Nature Photonics.

[37]  D. Kabra,et al.  Band Gap Tuning of CH₃NH₃Pb(Br(1-x)Clx)₃ Hybrid Perovskite for Blue Electroluminescence. , 2015, ACS applied materials & interfaces.

[38]  H. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, Nature Physics.

[39]  Jacky Even,et al.  Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals , 2015 .

[40]  M. Képénekian,et al.  Correction: Interplay of spin–orbit coupling and lattice distortion in metal substituted 3D tri-chloride hybrid perovskites , 2015 .

[41]  Claudine Katan,et al.  Solid-State Physics Perspective on Hybrid Perovskite Semiconductors , 2015 .

[42]  A. Walsh Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[43]  Y. Kanemitsu,et al.  Photoelectronic Responses in Solution-Processed Perovskite CH$_{\bf 3}$ NH$_{\bf 3}$PbI $_{\bf 3}$ Solar Cells Studied by Photoluminescence and Photoabsorption Spectroscopy , 2015, IEEE Journal of Photovoltaics.

[44]  P. Delugas,et al.  Radiative Recombination and Photoconversion of Methylammonium Lead Iodide Perovskite by First Principles: Properties of an Inorganic Semiconductor within a Hybrid Body , 2014 .

[45]  Feliciano Giustino,et al.  GW quasiparticle band gap of the hybrid organic-inorganic perovskite CH$_3$NH$_3$PbI$_3$: Effect of spin-orbit interaction, semicore electrons, and self-consistency , 2014, 1410.2029.

[46]  Giovanni Bongiovanni,et al.  Correlated electron–hole plasma in organometal perovskites , 2014, Nature Communications.

[47]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[48]  Clemens Burda,et al.  Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. , 2014, Journal of the American Chemical Society.

[49]  Yasuhiro Yamada,et al.  Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. , 2014, Journal of the American Chemical Society.

[50]  Prashant V. Kamat,et al.  Band filling with free charge carriers in organometal halide perovskites , 2014, Nature Photonics.

[51]  M. Johnston,et al.  Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films , 2014 .

[52]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[53]  M. Johnston,et al.  Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx , 2014 .

[54]  Tonu Pullerits,et al.  Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. , 2014, The journal of physical chemistry letters.

[55]  Claudine Katan,et al.  Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites , 2014 .

[56]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[57]  Laura M Herz,et al.  Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx. , 2014, The journal of physical chemistry letters.

[58]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[59]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[60]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[61]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[62]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[63]  Qin Meng Metal Insulator Transition , 2010 .

[64]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[65]  Andrea Marini,et al.  yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..

[66]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[67]  D. Vanderbilt,et al.  Spectral and Fermi surface properties from Wannier interpolation , 2007, cond-mat/0702554.

[68]  B. Deveaud,et al.  Determination of the exciton formation in quantum wells from time-resolved interband luminescence. , 2003, Physical review letters.

[69]  Richard Corkish,et al.  Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon , 2003 .

[70]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[71]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[72]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[73]  K. Kreher,et al.  Fundamentals of Semiconductors – Physics and Materials Properties , 1997 .

[74]  Teruya Ishihara,et al.  Optical properties of PbI-based perovskite structures , 1994 .

[75]  R. Girlanda,et al.  Optical properties of semiconductors within the independent-quasiparticle approximation. , 1993, Physical review. B, Condensed matter.

[76]  U. Rößler,et al.  The spectral distribution of the intrinsic radiative recombination in silicon , 1993 .

[77]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[78]  R. Needs,et al.  Metal-insulator transition in Kohn-Sham theory and quasiparticle theory. , 1989, Physical review letters.

[79]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[80]  H. Sakaki,et al.  Radiative recombination coefficient of free carriers in GaAs‐AlGaAs quantum wells and its dependence on temperature , 1987 .

[81]  Stefan Schmitt-Rink,et al.  Electron theory of the optical properties of laser-excited semiconductors , 1984 .

[82]  G. W. Hooft,et al.  Temperature dependence of interface recombination and radiative recombination in (Al, Ga)As heterostructures , 1983 .

[83]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[84]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[85]  Nuggehalli M. Ravindra,et al.  Temperature dependence of the energy gap in semiconductors , 1979 .

[86]  P. Edwards,et al.  Universality aspects of the metal-nonmetal transition in condensed media , 1978 .

[87]  H. Schlangenotto,et al.  Temperature dependence of the radiative recombination coefficient in silicon , 1974 .

[88]  Y. P. Varshni Band-to-Band Radiative Recombination in Groups IV, VI, and III-V Semiconductors (I) , 1967, February 1.

[89]  Y. P. Varshni Band-to-Band Radiative Recombination in Groups IV, VI, and III-V Semiconductors (II) , 1967 .

[90]  Fred H. Pollak,et al.  Energy-Band Structure of Germanium and Silicon: The k [] p Method , 1966 .

[91]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[92]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[93]  Frank Stern,et al.  Spontaneous and Stimulated Recombination Radiation in Semiconductors , 1964 .

[94]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[95]  R. J. Elliott,et al.  Intensity of Optical Absorption by Excitons , 1957 .

[96]  Martin J. Klein,et al.  Principle of Detailed Balance , 1955 .

[97]  W. Shockley,et al.  Photon-Radiative Recombination of Electrons and Holes in Germanium , 1954 .

[98]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .