An integrable model of quantum gravity

[1]  S. Carlip Lectures in (2+1)-Dimensional Gravity , 1995, gr-qc/9503024.

[2]  Nicolai,et al.  Separation of variables and Hamiltonian formulation for the Ernst equation. , 1994, Physical review letters.

[3]  H. Nicolai,et al.  The ernst equation on a riemann surface , 1994, gr-qc/9405032.

[4]  N. Reshetikhin,et al.  Gaudin model, Bethe Ansatz and critical level , 1994, hep-th/9402022.

[5]  H. Kastrup,et al.  Spherically symmetric gravity as a completely integrable system , 1994, gr-qc/9401032.

[6]  H. Babujian Off-shell Bethe ansatz equations and N-point correlators in the SU(2) WZNW theory , 1993 .

[7]  H. Nicolai,et al.  Physical States in d=3,N=2 Supergravity , 1993, gr-qc/9309006.

[8]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[9]  N. Reshetikhin Jackson-type integrals, bethe vectors, and solutions to a difference analog of the Knizhnik-Zamolodchikov system , 1992 .

[10]  Graham Supersymmetric Bianchi type IX cosmology. , 1991, Physical review letters.

[11]  D. Korotkin Algebraic geometric solutions of Einstein's equations: Some physical properties , 1991 .

[12]  A. Varchenko,et al.  Hypergeometric solutions of Knizhnik-Zamolodchikov equations , 1990 .

[13]  E. Sklyanin Separation of variables in the Gaudin model , 1989 .

[14]  Edward Witten,et al.  (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .

[15]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[16]  N. Reshetikhin,et al.  Integrability of the principal chiral field model in 1 + 1 dimension , 1986 .

[17]  V. G. Knizhnik,et al.  Current Algebra and Wess-Zumino Model in Two-Dimensions , 1984 .

[18]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[19]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .

[20]  D. Maison Are the stationary, axially symmetric Einstein equations completely integrable? , 1978 .

[21]  K. Kuchař Canonical quantization of cylindrical gravitational waves , 1971 .