Statistical approach to the insulation coordination of medium and high voltage cable lines

Risk of failure of MV and HV (up to 150 kV) cable lines stressed by lightning and switching overvoltages has been assessed by a statistical approach. Probability density functions of overvoltages amplitude in MV and HV system are estimated and correlated with the failure probability distributions of cable lines insulated with different EPR compounds. The results of the evaluation are plotted and discussed showing the influence of cable length and type of insulation compound on the risk values.

[1]  L. V. Bewley,et al.  Traveling Waves on Transmission Systems , 1931, Transactions of the American Institute of Electrical Engineers.

[2]  Nancy R. Mann,et al.  Tables for Obtaining the Best Linear Invariant Estimates of Parameters of the Weibull Distribution , 1967 .

[3]  A. Greenwood,et al.  Electrical transients in power systems , 1971 .

[4]  S. A. Schelkunoff,et al.  The electromagnetic theory of coaxial transmission lines and cylindrical shields , 1934 .

[5]  T. Ito,et al.  Lightning flashovers on 77-kV systems: observed voltage bias effects and analysis , 2003 .

[6]  L. M. Wedepohl,et al.  Estimation of transient sheath overvoltages in power-cable transmission systems , 1973 .

[7]  E. Greenfield,et al.  Transient Behavior Of Short And Long Cables , 1984, IEEE Transactions on Power Apparatus and Systems.

[8]  N. Mann Point and Interval Estimation Procedures for the Two-Parameter Weibull and Extreme-Value Distributions , 1968 .

[9]  Hideki Motoyama,et al.  Analytical and experimental study on surge response of transmission tower , 2000 .

[10]  Pritindra Chowdhuri Electromagnetic transients in power systems , 1996 .

[11]  Gian Carlo Montanari,et al.  In search of convenient techniques for reducing bias in the estimation of Weibull parameters for uncensored tests , 1997 .

[12]  L. M. Wedepohl,et al.  Transient analysis of underground power-transmission systems. System-model and wave-propagation characteristics , 1973 .

[13]  A. Ametani,et al.  A General Formulation of Impedance and Admittance of Cables , 1980, IEEE Transactions on Power Apparatus and Systems.

[14]  G. C. Montanari,et al.  A robust technique for the estimation of the two-parameter Weibull function for complete data sets , 2002 .

[15]  N. Nagaoka,et al.  Semiconducting Layer impedance and its effect on cable wave-propagation and transient Characteristics , 2004, IEEE Transactions on Power Delivery.

[16]  Ralph B. D'Agostino,et al.  Linear Estimation of the Weibull Parameters , 1971 .

[17]  Akihiro Ametani,et al.  Experimental evaluation of a UHV tower model for lightning surge analysis , 1995 .

[18]  A. Prudenzi,et al.  Statistical analysis of transient events monitored in an electrified subway system , 2004, 2004 International Conference on Probabilistic Methods Applied to Power Systems.

[19]  Akihiro Ametani,et al.  Frequency-dependent impedance of vertical conductors and a multiconductor tower model , 1994 .

[20]  John S. White The Moments of Log-Weibull Order Statistics , 1969 .

[21]  Akihiro Ametani,et al.  Investigation of flashover phases in a lightning surge by new archorn and tower models , 2002, IEEE/PES Transmission and Distribution Conference and Exhibition.

[22]  N. Mullineux,et al.  Computation of power system transients , 1976 .

[23]  Lee J. Bain,et al.  Simplified Statistical Procedures for the Weibull or Extreme-Value Distribution , 1977 .

[24]  E. Occhini,et al.  A Statistical Approach to the Discussion of the Dielectric Strength in Electric Cables , 1971 .

[25]  A. J. Eriksson,et al.  An Improved Electrogeometric Model for Transmission Line Shielding Analysis , 1987, IEEE Transactions on Power Delivery.