BAYESIAN FUNCTIONAL REGISTRATION OF FMRI ACTIVATION MAPS.

Functional magnetic resonance imaging (fMRI) has provided invaluable insight into our understanding of human behavior. However, large interindividual differences in both brain anatomy and functional localization after anatomical alignment remain a major limitation in conducting group analyses and performing population level inference. This paper addresses this problem by developing and validating a new computational technique for reducing misalignment across individuals in functional brain systems by spatially transforming each subjects functional data to a common reference map. Our proposed Bayesian functional registration approach allows us to assess differences in brain function across subjects and individual differences in activation topology. It combines intensity-based and feature-based information into an integrated framework, and allows inference to be performed on the transformation via the posterior samples. We evaluate the method in a simulation study and apply it to data from a study of thermal pain. We find that the proposed approach provides increased sensitivity for group-level inference.

[1]  Andrew O. Finley,et al.  Efficient Algorithms for Bayesian Nearest Neighbor Gaussian Processes , 2017, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[2]  Mark W. Woolrich,et al.  Probabilistic inference of regularisation in non-rigid registration , 2012, NeuroImage.

[3]  Peter J. Ramadge,et al.  Kernel Hyperalignment , 2012, NIPS.

[4]  Vladimir Vovk,et al.  Aggregating strategies , 1990, COLT '90.

[5]  Noppadol Chumchob,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information a Robust Affine Image Registration Method , 2022 .

[6]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[7]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[8]  B. Vogt,et al.  Human cingulate cortex: Surface features, flat maps, and cytoarchitecture , 1995, The Journal of comparative neurology.

[9]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[10]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Abhirup Datta,et al.  Generalized Bayes Quantification Learning under Dataset Shift , 2021 .

[12]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[13]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[14]  Gary E. Christensen,et al.  Consistent landmark and intensity-based image registration , 2002, IEEE Transactions on Medical Imaging.

[15]  Mark Tommerdahl,et al.  Role of primary somatosensory cortex in the coding of pain , 2013, PAIN®.

[16]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[17]  Joseph T. Devlin,et al.  Consistency and variability in functional localisers , 2009, NeuroImage.

[18]  Peter Grünwald,et al.  Fast Rates for General Unbounded Loss Functions: From ERM to Generalized Bayes , 2016, J. Mach. Learn. Res..

[19]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[20]  Joseph L. Awange,et al.  Procrustean solution of the 9-parameter transformation problem , 2008 .

[21]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[22]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[23]  Hao Xu,et al.  Regularized hyperalignment of multi-set fMRI data , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[24]  Derek Bradley,et al.  Adaptive Thresholding using the Integral Image , 2007, J. Graph. Tools.

[25]  Peter J. Ramadge,et al.  Inter-subject alignment of human cortical anatomy using functional connectivity , 2013, NeuroImage.

[26]  Martin A. Lindquist,et al.  Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling , 2009, NeuroImage.

[27]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[28]  G. Matheron Principles of geostatistics , 1963 .

[29]  Luke A Henderson,et al.  Pain and Plasticity: Is Chronic Pain Always Associated with Somatosensory Cortex Activity and Reorganization? , 2012, The Journal of Neuroscience.

[30]  Gary E. Christensen,et al.  Consistent image registration , 2001, IEEE Transactions on Medical Imaging.

[31]  Bryan R. Conroy,et al.  A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal Cortex , 2011, Neuron.

[32]  D. Hill,et al.  Non-rigid image registration: theory and practice. , 2004, The British journal of radiology.

[33]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[34]  Sudipto Banerjee,et al.  Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets , 2014, Journal of the American Statistical Association.

[35]  Christian P. Robert,et al.  Statistics for Spatio-Temporal Data , 2014 .

[36]  Aki Vehtari,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.

[37]  David A. McAllester Some PAC-Bayesian Theorems , 1998, COLT' 98.

[38]  Po-Hsuan Chen,et al.  Joint SVD-Hyperalignment for multi-subject FMRI data alignment , 2014, 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[39]  Martin A. Lindquist,et al.  Handbook of Neuroimaging Data Analysis , 2016 .

[40]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[41]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[42]  Pier Giovanni Bissiri,et al.  A general framework for updating belief distributions , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[43]  N. Hjort,et al.  On Bayesian consistency , 2001 .

[44]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[45]  Mohammed Bennamoun,et al.  Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  T. Allison,et al.  Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. , 1999, Cerebral cortex.

[47]  M. Lindquist The Statistical Analysis of fMRI Data. , 2008, 0906.3662.

[48]  J. Modersitzki,et al.  Ill-posed medicine—an introduction to image registration , 2008 .

[49]  Satrajit S. Ghosh,et al.  Diffeomorphic functional brain surface alignment: Functional demons , 2017, NeuroImage.

[50]  J. S. Guntupalli,et al.  A Model of Representational Spaces in Human Cortex , 2016, Cerebral cortex.

[51]  John Shawe-Taylor,et al.  A PAC analysis of a Bayesian estimator , 1997, COLT '97.

[52]  R. Malach,et al.  Intersubject Synchronization of Cortical Activity During Natural Vision , 2004, Science.

[53]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[54]  J. N. Cederberg A Course in Modern Geometries , 1989 .

[55]  V. Chernozhukov,et al.  An MCMC Approach to Classical Estimation , 2002, 2301.07782.

[56]  David B. Dunson,et al.  A generalized Bayes framework for probabilistic clustering , 2020, Biometrika.

[57]  M. Bushnell,et al.  Pain perception: is there a role for primary somatosensory cortex? , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Jan Modersitzki,et al.  Curvature Based Image Registration , 2004, Journal of Mathematical Imaging and Vision.

[59]  Michael Unser,et al.  An efficient mutual information optimizer for multiresolution image registration , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[60]  Bryan R. Conroy,et al.  Function-based Intersubject Alignment of Human Cortical Anatomy , 2009, Cerebral cortex.

[61]  R. Kakigi,et al.  Electrophysiological studies on human pain perception , 2005, Clinical Neurophysiology.

[62]  Li Fei-Fei,et al.  Locally-Optimized Inter-Subject Alignment of Functional Cortical Regions , 2014, 1606.02349.

[63]  Armin Gruen,et al.  High-precision image matching for digital terrain model generation , 1987 .

[64]  T. Wager,et al.  Distinct Brain Systems Mediate the Effects of Nociceptive Input and Self-Regulation on Pain , 2015, PLoS biology.

[65]  Nassir Navab,et al.  Pixel-Based Hyperparameter Selection for Feature-Based Image Registration , 2010, VMV.