Evaluating Eight Global Reanalysis Products for Atmospheric Correction of Thermal Infrared Sensor - Application to Landsat 8 TIRS10 Data

Global reanalysis products have been widely used for correcting the atmospheric effects of thermal infrared data, but their performances have not been comprehensively evaluated. In this paper, we evaluate eight global reanalysis products (NCEP/FNL; NCEP/DOE Reanalysis2; MERRA-3; MERRA-6; MERRA2-3; MERRA2-6; JRA-55; and ERA-Interim) commonly used in the atmospheric correction of Landsat 8 TIRS10 data by referencing global radiosonde observations collected from 163 stations. The atmospheric parameters (atmospheric transmittance, upward radiance, and downward radiance) simulated with MERRA-6 and ERA-Interim were accurate than those simulated with other reanalysis products for different water vapor contents and surface elevations. When global reanalysis products were applied to retrieve land surface temperature (LST) from simulated Landsat 8 TIRS10 data, ERA-Interim and MERRA-6 were accurate than other reanalysis products. The overall LST biases and RMSEs between the retrieved LSTs and LSTs that were used to generate the top-of-atmosphere radiances were less than 0.2 K and 1.09 K, respectively. When eight reanalysis products were used to estimate LSTs from thirty-two Landsat 8 TIRS10 images covering the Heihe River basin in China, the various reanalysis products showed similar validation accuracies for LSTs with low water vapor contents. The biases ranged from 0.07 K to 0.24 K, and the STDs (RMSEs) ranged from 1.93 K (1.93 K) to 2.02 K (2.04 K). Considering the above evaluation results, MERRA-6 and ERA-Interim are recommended for thermal infrared data atmospheric corrections.

[1]  F. Gao,et al.  Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data , 2014 .

[2]  Shunlin Liang,et al.  Estimating global land surface broadband thermal-infrared emissivity using advanced very high resolution radiometer optical data , 2013 .

[3]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[4]  John R. Schott,et al.  Validation of a web-based atmospheric correction tool for single thermal band instruments , 2005, SPIE Optics + Photonics.

[5]  Jorge Rosas,et al.  Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems , 2017, Remote. Sens..

[6]  Zhihao Qin,et al.  Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data , 2001 .

[7]  J. Townshend,et al.  A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies , 2013 .

[8]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[9]  José A. Sobrino,et al.  Trends in column integrated water vapour over Europe from 1973 to 2003 , 2011 .

[10]  Olivier Hagolle,et al.  A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data , 2016, Remote. Sens..

[11]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[12]  José A. Sobrino,et al.  LST retrieval algorithm adapted to the Amazon evergreen forests using MODIS data , 2018 .

[13]  Xiaotong Zhang,et al.  Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations , 2016, Remote. Sens..

[14]  Isabel F. Trigo,et al.  Improving Land Surface Temperature Retrievals over Mountainous Regions , 2017, Remote. Sens..

[15]  M. Bosilovich,et al.  Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations , 2012 .

[16]  Kirsten M. de Beurs,et al.  An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[17]  Simon J. Hook,et al.  Validation of a New Parametric Model for Atmospheric Correction of Thermal Infrared Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Enric Valor,et al.  An Atmospheric Radiosounding Database for Generating Land Surface Temperature Algorithms , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Vicente Caselles,et al.  Validation of Landsat-7/ETM+ Thermal-Band Calibration and Atmospheric Correction With Ground-Based Measurements , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[20]  John R. Schott,et al.  Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive , 2014, Remote. Sens..

[21]  G. Ritchie,et al.  Radiation in the Atmosphere , 2017 .

[22]  Panmao Zhai,et al.  Atmospheric Water Vapor over China. , 1997 .

[23]  Ning Wang,et al.  Land Surface Temperature and Emissivity Retrieval From Time-Series Mid-Infrared and Thermal Infrared Data of SVISSR/FY-2C , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[25]  Yongming Du,et al.  Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China , 2014 .

[26]  Juan C. Jiménez-Muñoz,et al.  Vicarious Calibration of the Landsat 7 Thermal Infrared Band and LST Algorithm Validation of the ETM+ Instrument Using Three Global Atmospheric Profiles , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Fabio Del Frate,et al.  Review of Thermal Infrared Applications and Requirements for Future High-Resolution Sensors , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[28]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[29]  Qing Xiao,et al.  Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design , 2013 .

[30]  Shunlin Liang,et al.  Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product , 2014 .

[31]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[32]  D. Qin,et al.  Evaluation of ERA‐40, NCEP‐1, and NCEP‐2 reanalysis air temperatures with ground‐based measurements in China , 2008 .

[33]  J. Sobrino,et al.  A generalized single‐channel method for retrieving land surface temperature from remote sensing data , 2003 .

[34]  Xubin Zeng,et al.  Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau , 2012 .

[35]  Lin Sun,et al.  Retrieving land surface temperature from Landsat 8 TIRS data using RTTOV and ASTER GED , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[36]  Zhao-Liang Li,et al.  A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data , 1997, IEEE Trans. Geosci. Remote. Sens..

[37]  Maria Mira,et al.  Evaluation of Different Methods to Retrieve the Hemispherical Downwelling Irradiance in the Thermal Infrared Region for Field Measurements , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[38]  José A. Sobrino,et al.  Global Atmospheric Profiles from Reanalysis Information (GAPRI): a new database for earth surface temperature retrieval , 2015 .

[39]  Dick Dee,et al.  Low‐frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets , 2010 .

[40]  C. Kobayashi,et al.  The JRA-55 Reanalysis: General Specifications and Basic Characteristics , 2015 .

[41]  Jindi Wang,et al.  A Stepwise Refining Algorithm of Temperature and Emissivity Separation for Hyperspectral Thermal Infrared Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Vicente García-Santos,et al.  Comparing different profiles to characterize the atmosphere for three MODIS TIR bands , 2015 .

[43]  Hua Li,et al.  Evaluation of the NCEP and MODIS Atmospheric Products for Single Channel Land Surface Temperature Retrieval With Ground Measurements: A Case Study of HJ-1B IRS Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[44]  K. I. Kondratʹev Radiation in the atmosphere , 1969 .

[45]  Jie Cheng,et al.  Estimating Land Surface Temperature from Feng Yun-3C/MERSI Data Using a New Land Surface Emissivity Scheme , 2017, Remote. Sens..

[46]  Karsten Schulz,et al.  Elevation correction of ERA-Interim temperature data in complex terrain , 2012 .

[47]  V. Caselles,et al.  Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data , 2012 .

[48]  A. Chedin,et al.  The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. , 1985 .

[49]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[50]  Julia A. Barsi,et al.  An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).