Nonbinary quantum codes from constacyclic codes over polynomial residue rings

Let R be the polynomial residue ring $${\mathbb {F}}_{q^{2}}+u{\mathbb {F}}_{q^{2}}$$ F q 2 + u F q 2 , where $${\mathbb {F}}_{q^2}$$ F q 2 is the finite field with $$q^2$$ q 2 elements, q is a power of a prime p , and u is an indeterminate with $$u^{2}=0.$$ u 2 = 0 . We introduce a Gray map from R to $${\mathbb {F}}_{q^{2}}^{p}$$ F q 2 p and study $$(1-u)$$ ( 1 - u ) -constacyclic codes over R . It is proved that the image of a $$(1-u)$$ ( 1 - u ) -constacyclic code of length n over R under the Gray map is a distance-invariant linear cyclic code of length pn over $${\mathbb {F}}_{q^{2}}.$$ F q 2 . We give some necessary and sufficient conditions for $$(1-u)$$ ( 1 - u ) -constacyclic codes over R to be Hermitian dual-containing. In particular, a new class of $$2^{m}$$ 2 m -ary quantum codes is obtained via the Gray map and the Hermitian construction from Hermitian dual-containing $$(1-u)$$ ( 1 - u ) -constacyclic codes over the ring $${\mathbb {F}}_{2^{2m}}+u{\mathbb {F}}_{2^{2m}}$$ F 2 2 m + u F 2 2 m .

[1]  Guanghui Zhang,et al.  Application of Constacyclic Codes to Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[2]  T. Aaron Gulliver,et al.  Quantum codes over rings , 2014 .

[3]  Jian Gao,et al.  u-Constacyclic codes over $${\mathbb {F}}_p+u{\mathbb {F}}_p$$Fp+uFp and their applications of constructing new non-binary quantum codes , 2018, Quantum Inf. Process..

[4]  Mohammad Ashraf,et al.  Quantum codes from cyclic codes over $$F_q+uF_q+vF_q+uvF_q$$Fq+uFq+vFq+uvFq , 2016, Quantum Inf. Process..

[5]  Fangwei Fu,et al.  Quantum codes from cyclic codes over the ring $${\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_r{\mathbb {F}}_q$$Fq+v1Fq+⋯+vrFq , 2018, Applicable Algebra in Engineering, Communication and Computing.

[6]  Shixin Zhu,et al.  New quantum MDS codes derived from constacyclic codes , 2014, Quantum Inf. Process..

[7]  Daniele Bartoli,et al.  New Quantum Caps in PG(4, 4) , 2009, 0905.1059.

[8]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[9]  Mohammad Ashraf,et al.  Construction of quantum codes from cyclic codes over Fp + vFp , 2015, Int. J. Inf. Coding Theory.

[10]  Shixin Zhu,et al.  Constacyclic Codes and Some New Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[11]  Xiusheng Liu,et al.  Quantum codes from linear codes over finite chain rings , 2017, Quantum Inf. Process..

[12]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[13]  Xueliang Li,et al.  Construction of quantum caps in projective space PG(r, 4) and quantum codes of distance 4 , 2016, Quantum Inf. Process..

[14]  Shixin Zhu,et al.  New quantum codes from dual-containing cyclic codes over finite rings , 2016, Quantum Inf. Process..

[15]  Shixin Zhu,et al.  QUATERNARY CONSTRUCTION OF QUANTUM CODES FROM CYCLIC CODES OVER $\mathbb{F}_4 + u\mathbb{F}_4$ , 2011 .

[16]  Tao Zhang,et al.  Some New Classes of Quantum MDS Codes From Constacyclic Codes , 2015, IEEE Transactions on Information Theory.

[17]  Wenping Ma,et al.  QUANTUM CODES FROM CYCLIC CODES OVER FINITE RING , 2009 .

[18]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[19]  Irfan Siap,et al.  ON QUANTUM CODES FROM CYCLIC CODES OVER A CLASS OF NONCHAIN RINGS , 2016 .