A robust shell element in meshfree SPH method

With the incorporation of total Lagrangian smoothed particle hydrodynamics (SPH) method equation and moving least square (MLS) function, the traditional SPH method is improved regarding the stability and consistency. Based on Mindlin-Ressiner plate theory, the SPH method simulating dynamic behavior via one layer of particles is applied to plate’s mid-plane, i.e., a SPH shell model is constructed. Finally, through comparative analyses on the dynamic response of square, stiffened shells and cylindrical shells under various strong impact loads with common finite element software, the feasibility, validity and numerical accuracy of the SPH shell method are verified. Consequently, further researches on SPH shell may well pave the way towards solving problems involving dynamic plastic damage, tearing or even crushing.

[1]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[2]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[3]  Hirohisa Noguchi,et al.  Element free analyses of shell and spatial structures , 2000 .

[4]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[5]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[6]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[7]  P. W. Randles,et al.  Normalized SPH with stress points , 2000 .

[8]  Wing Kam Liu,et al.  MESHLESS METHODS FOR SHEAR-DEFORMABLE BEAMS AND PLATES , 1998 .

[9]  Mattias Unosson,et al.  Failure modelling in finite element analyses: element erosion with crack-tip enhancement , 2006 .

[10]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[11]  R. P. Ingel,et al.  An approach for tension instability in smoothed particle hydrodynamics (SPH) , 1995 .

[12]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[13]  Hae-Soo Oh,et al.  Meshfree particle methods for thin plates , 2012 .

[14]  E. Fancello,et al.  Developments in the application of the generalized finite element method to thick shell problems , 2009 .

[15]  Alain Combescure,et al.  An SPH shell formulation for plasticity and fracture analysis in explicit dynamics , 2008 .

[16]  O. G. McGee,et al.  A THREE‐DIMENSIONAL ANALYSIS OF THE SPHEROIDAL AND TOROIDAL ELASTIC VIBRATIONS OF THICK‐WALLED SPHERICAL BODIES OF REVOLUTION , 1997 .

[17]  Y. Miao,et al.  An O ( N ) Fast Multipole Hybrid Boundary Node Method for 3D Elasticity , 2012 .

[18]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[19]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[20]  T. Belytschko,et al.  Analysis of thin shells by the Element-Free Galerkin method , 1996 .

[21]  Vincent Faucher,et al.  Dynamic simulation of damage‐fracture transition in smoothed particles hydrodynamics shells , 2012 .

[22]  Hui Luo,et al.  Dual Hybrid Boundary Node Method for Solving Transient Dynamic Fracture Problems , 2012 .

[23]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[24]  Dongdong Wang,et al.  Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation , 2004 .

[25]  Philippe Bouillard,et al.  On elimination of shear locking in the element‐free Galerkin method , 2001 .

[26]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[27]  W. Hao,et al.  Numerical simulations of large deformation of thin shell structures using meshfree methods , 2000 .

[28]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[29]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[30]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[31]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[32]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[33]  R. P. Ingel,et al.  STRESS POINTS FOR TENSION INSTABILITY IN SPH , 1997 .

[34]  Yingjun Wang,et al.  Development of hybrid boundary node method in two-dimensional elasticity , 2005 .

[35]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[36]  Guangyao Li,et al.  Analysis of plates and shells using an edge-based smoothed finite element method , 2009 .

[37]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .