Uniqueness of the Cheeger set of a convex body

Abstract We prove that if C ⊂ R N is an open bounded convex set, then there is only one Cheeger set inside C and it is convex. A Cheeger set of C is a set which minimizes the ratio perimeter over volume among all subsets of C .

[1]  K. Miller,et al.  Asymptotic Growth for the Parabolic Equation of Prescribed Mean Curvature , 1984 .

[2]  B. Kawohl,et al.  Global behaviour of solutions to a parabolic mean curvature equation , 1995, Differential and Integral Equations.

[3]  Matteo Novaga,et al.  The p-Laplace eigenvalue problem as p goes to 1 and Cheeger sets in a Finsler metric , 2008 .

[4]  Thomas Lachand-Robert,et al.  Generalized Cheeger sets related to landslides , 2005 .

[5]  W. Ziemer,et al.  Area minimizing sets subject to a volume constraint in a convex set , 1997, math/9811046.

[6]  Bernhard Kawohl,et al.  On a familiy of torsional creep problems. , 1990 .

[7]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[8]  G. Carlier,et al.  On a weighted total variation minimization problem , 2007 .

[9]  Daniel Grieser The first eigenvalue of the Laplacian, isoperimetric constants, and the Max Flow Min Cut Theorem , 2005 .

[10]  R. Temam,et al.  Pseudosolutions of the time-dependent minimal surface problem , 1978 .

[11]  E. Cachan,et al.  Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow , 2005 .

[12]  B. Kawohl,et al.  CHARACTERIZATION OF CHEEGER SETS FOR CONVEX SUBSETS OF THE PLANE , 2006 .

[13]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[14]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[15]  M. Novaga,et al.  The Total Variation Flow in RN , 2002 .

[16]  L. Evans,et al.  Motion of level sets by mean curvature III , 1992 .

[17]  V. Bangert Convex hypersurfaces with bounded first mean curvature measure , 1999 .

[18]  Édouard Oudet,et al.  Minimizing within Convex Bodies Using a Convex Hull Method , 2005, SIAM J. Optim..

[19]  S. Ozawa The first eigenvalue of the Laplacian on two-dimensional Riemannian manifolds , 1982 .

[20]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[21]  A. Chambolle,et al.  A characterization of convex calibrable sets in RN with respect to anisotropic norms , 2008 .

[22]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[23]  F. Almgren,et al.  Curvature-driven flows: a variational approach , 1993 .

[24]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[25]  Luigi Ambrosio Corso introduttivo alla teoria geometrica della misura ed alle superfici minime , 1997 .

[26]  The Curvature of a Set with Finite Area , 1994 .

[27]  F. Gantmakher,et al.  Théorie des matrices , 1990 .

[28]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[29]  M. Novaga,et al.  The p-Laplace eigenvalue problem as p → 1 and Cheeger sets in a Finsler metric , 2006 .

[30]  P. Sutcliffe The Oxford University Press , 2000 .

[31]  C. Ballester,et al.  The Dirichlet Problem for the Total Variation Flow , 2001 .

[32]  A. Chambolle,et al.  Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow , 2005 .

[33]  Gilbert Strang,et al.  Maximal flow through a domain , 1983, Math. Program..

[34]  Superharmonicity of curvatures for surfaces of constant mean curvature , 1992 .

[35]  Bernhard Kawohl,et al.  Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant , 2003 .

[36]  G. Anzellotti,et al.  Pairings between measures and bounded functions and compensated compactness , 1983 .

[37]  E. Giusti On the equation of surfaces of prescribed mean curvature , 1978 .

[38]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[39]  On the rectifiability of domains with finite perimeter , 1976 .

[40]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[41]  Lew Lefton,et al.  Numerical approximation of the first eigenpair of the p-Laplacian using finite elements and the penalty method , 1997 .

[42]  Enrico Giusti Boundary value problems for non-parametric surfaces of prescribed mean curvature , 1976 .

[43]  I. Tamanini,et al.  Minimal boundaries enclosing a given volume , 1981 .

[44]  B. Chow Deforming convex hypersurfaces by the square root of the scalar curvature , 1987 .

[45]  D. Kinderlehrer,et al.  The Smoothness of Solutions to Nonlinear Variational Inequalities , 1974 .

[46]  A. Chambolle,et al.  A characterization of convex calibrable sets in , 2005 .

[47]  P. Lions,et al.  CONVEX VISCOSITY SOLUTIONS AND STATE CONSTRAINTS , 1997 .