A dynamic segmentation approach for targeting and customizing direct marketing campaigns

An important aspect of customer relationship management is the targeting of customer segments with tailored promotional activities. While most contributions focus on the selection of promising customers for targeting, only few authors address the question of which specific differential offers to direct to the selected target groups. We focus on both issues and propose a flexible, two-stage approach for dynamically deriving behaviorally persistent segments and subsequent target marketing selection using retail-purchase histories from loyalty-program members. The underlying concept of behavioral persistence entails an in-depth analysis of complementary cross-category purchase interdependencies at a segment level. The effectiveness and efficiency of the proposed procedure are demonstrated in a controlled field experiment involving the targeting of several thousands of customers enrolled in the loyalty program of a “do-it-yourself” retailer. Our empirical findings provide evidence of significant positive impacts on both profitability and sales for segment-specific tailored direct marketing campaigns.

[1]  Friedrich Leisch,et al.  A toolbox for K-centroids cluster analysis , 2006 .

[2]  Peter E. Rossi,et al.  The Value of Purchase History Data in Target Marketing , 1996 .

[3]  Vicki G. Morwitz,et al.  Testing New Direct Marketing Offerings: the Interplay of Management Judgment and Statistical Models , 1998 .

[4]  M. Aldenderfer Cluster Analysis , 1984 .

[5]  Van den PoelDirk,et al.  Constrained optimization of data-mining problems to improve model performance , 2005 .

[6]  Martin Natter,et al.  Collaborative filtering or regression models for Internet recommendation systems? , 2002 .

[7]  Ulrich Küsters,et al.  Handbuch Data Mining im Marketing : knowledge discovery in marketing databases , 2001 .

[8]  Reinhold Decker,et al.  Market Basket Analysis by Means of a Growing Neural Network , 2005 .

[9]  Olivier Furrer Driving Customer Equity: How Customer Lifetime Value Is Reshaping Corporate Strategy , 2002 .

[10]  Pradeep K. Chintagunta,et al.  Investigating Household State Dependence Effects across Categories , 1999 .

[11]  Ralf Der,et al.  Efficient State-Space Representation by Neural Maps for Reinforcement Learning , 1999 .

[12]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[13]  Marcel Corstjens,et al.  Store Wars: The Battle for Mindspace and Shelfspace , 1995 .

[14]  André Hardy,et al.  An examination of procedures for determining the number of clusters in a data set , 1994 .

[15]  Katherine N. Lemon,et al.  Return on Marketing: Using Customer Equity to Focus Marketing Strategy , 2004 .

[16]  Peter E. Rossi,et al.  Similarities in Choice Behavior Across Product Categories , 1998 .

[17]  Gary J. Russell,et al.  Multiple-Category Decision-Making: Review and Synthesis , 1999 .

[18]  D. W.,et al.  Customer lifetime value: Marketing models and applications , 1998 .

[19]  Merlin Stone Scoring Points: How Tesco is Winning Customer Loyalty , 2003 .

[20]  S. Chib,et al.  Models of Multi-Category Choice Behavior , 2005 .

[21]  W. Reinartz,et al.  On the Profitability of Long-Life Customers in a Noncontractual Setting: An Empirical Investigation and Implications for Marketing , 2000 .

[22]  Michael J. A. Berry,et al.  Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management , 2004 .

[23]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[24]  V. Kumara,et al.  Building and sustaining profitable customer loyalty for the 21 st century , 2004 .

[25]  Gary J. Russell,et al.  Modeling Multiple Category Brand Preference with Household Basket Data , 1997 .

[26]  A. D. Gordon,et al.  Partitions of Partitions , 1998 .

[27]  Sunil Gupta,et al.  The Shopping Basket: A Model for Multicategory Purchase Incidence Decisions , 1999 .

[28]  Reinhold Decker,et al.  Market basket analysis with neural gas networks and self-organising maps , 2003 .

[29]  Gary J. Russell,et al.  Analysis of cross category dependence in market basket selection , 2000 .

[30]  John C. Haughey The Loyalty Effect , 1997, Business Ethics Quarterly.

[31]  Thomas Reutterer,et al.  An improved collaborative filtering approach for predicting cross-category purchases based on binary market basket data , 2003 .

[32]  Thomas Reutterer,et al.  A Combined Approach for Segment-Specific Analysis of Market Basket Data , 2006 .

[33]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[34]  Arnd Huchzermeier,et al.  The 2003 ISMS Practice Prize Winner: Optimizing Rhenania's Direct Marketing Business Through Dynamic Multilevel Modeling (DMLM) in a Multicatalog-Brand Environment , 2004 .

[35]  H. Hruschka,et al.  Cross-category sales promotion effects , 1999 .

[36]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[37]  Ralf Walther,et al.  Handbuch Data Mining im Marketing , 2002, Künstliche Intell..

[38]  Kurt Hornik,et al.  Cluster Ensembles , 2004, GfKl.

[39]  Peter S. Fader,et al.  RFM and CLV: Using Iso-Value Curves for Customer Base Analysis , 2005 .

[40]  S. Chib,et al.  Analysis of multi-category purchase incidence decisions using IRI market basket data , 2002 .

[41]  Wagner A. Kamakura,et al.  Inferring Market Structure from Customer Response to Competing and Complementary Products , 2001 .

[42]  Nissan Levin,et al.  Applying neural computing to target marketing , 1997 .

[43]  Dirk Van den Poel,et al.  Constrained optimization of data-mining problems to improve model performance: A direct-marketing application , 2005, Expert Syst. Appl..

[44]  Shane S. Dikolli,et al.  Customer profitability analysis , 1995 .

[45]  Dominique Haughton,et al.  Direct marketing modeling with CART and CHAID , 1997 .

[46]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[47]  Anil K. Jain,et al.  Validity studies in clustering methodologies , 1979, Pattern Recognit..

[48]  Henk A. L. Kiers,et al.  Classification - the Ubiquitous challenge. , 2005 .

[49]  Frederick F. Reichheld,et al.  The Loyalty Effect: The Hidden Force Behind Growth, Profits, and Lasting Value (Эффект лояльности: скрытая движущая сила роста, прибыли и постоянной ценности) , 1996 .

[50]  Behram J. Hansotia,et al.  Analytical challenges in customer acquisition , 1997 .

[51]  Philip Hans Franses,et al.  Econometric Models in Marketing , 2002 .

[52]  C SchmittleinDavid,et al.  Testing New Direct Marketing Offerings , 1998 .

[53]  Andreas Mild,et al.  Collaborative Filtering Methods for Binary Market Basket Data Analysis , 2001, Active Media Technology.

[54]  W. Reinartz,et al.  The mismanagement of customer loyalty. , 2002, Harvard business review.

[55]  R. Winer A Framework for Customer Relationship Management , 2001 .

[56]  Gesellschaft für Klassifikation. Jahrestagung,et al.  Classification - the Ubiquitous Challenge, Proceedings of the 28th Annual Conference of the Gesellschaft für Klassifikation e.V., University of Dortmund, March 9-11, 2004 , 2005, GfKl.

[57]  Richard Colombo,et al.  A stochastic RFM model , 1999 .

[58]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[59]  Barbara E. Kahn,et al.  Grocery Revolution: The New Focus on the Consumer , 1997 .

[60]  Rick L. Andrews,et al.  Identifying segments with identical choice behaviors across product categories: An Intercategory Logit Mixture model , 2002 .

[61]  Francis J. Mulhern,et al.  Customer Profitability Analysis: Measurement, Concentration, and Research Directions , 1999 .

[62]  Hans-Hermann Bock,et al.  Clustering and Neural Network Approaches , 1999 .

[63]  Susana V. Mondschein,et al.  Mailing Decisions in the Catalog Sales Industry , 1996 .

[64]  Denish Shah,et al.  Building and sustaining profitable customer loyalty for the 21st century , 2004 .

[65]  D. Jain,et al.  Customer lifetime value research in marketing: A review and future directions , 2002 .