Characterizing Equivalential and Algebraizable Logics by the Leibniz Operator

In [14] we used the term finitely algebraizable for algebraizable logics in the sense of Blok and Pigozzi [2] and we introduced possibly infinitely algebraizable, for short, p.i.-algebraizable logics. In the present paper, we characterize the hierarchy of protoalgebraic, equivalential, finitely equivalential, p.i.-algebraizable, and finitely algebraizable logics by properties of the Leibniz operator. A Beth-style definability result yields that finitely equivalential and finitely algebraizable as well as equivalential and p.i.-algebraizable logics can be distinguished by injectivity of the Leibniz operator. Thus, from a characterization of equivalential logics we obtain a new short proof of the main result of [2] that a finitary logic is finitely algebraizable iff the Leibniz operator is injective and preserves unions of directed systems. It is generalized to nonfinitary logics. We characterize equivalential and, by adding injectivity, p.i.-algebraizable logics.