The use of hybrid meshes to improve the efficiency of a discontinuous Galerkin method for the solution of Maxwell’s equations
暂无分享,去创建一个
[1] Antonio Huerta,et al. Comparison of high‐order curved finite elements , 2011 .
[2] K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .
[3] Harold L. Atkins,et al. QUADRATURE-FREE IMPLEMENTATION OF DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS , 1996 .
[4] J Peiró. Surface Grid Generation , 1998 .
[5] R. Cárdenas. NURBS-Enhanced Finite Element Method (NEFEM) , 2009 .
[6] Antonio Huerta,et al. NURBS‐enhanced finite element method for Euler equations , 2008 .
[7] J. Hesthaven,et al. Nodal high-order methods on unstructured grids , 2002 .
[8] S. Wandzurat,et al. Symmetric quadrature rules on a triangle , 2003 .
[9] R. Harrington. Time-Harmonic Electromagnetic Fields , 1961 .
[10] Kenneth Morgan,et al. Tailoring unstructured meshes for use with a 3D time domain co‐volume algorithm for computational electromagnetics , 2011 .
[11] Mark Ainsworth,et al. Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .
[12] Oubay Hassan,et al. A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain , 2009 .
[13] H. Fahs. Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation , 2009 .
[14] Jan S. Hesthaven,et al. High-order accurate methods in time-domain computational electromagnetics: A review , 2003 .
[15] Haoxiang Luo,et al. A Lobatto interpolation grid in the tetrahedron , 2006 .
[16] C. Bernardi. Optimal finite-element interpolation on curved domains , 1989 .
[17] J. S. Chen,et al. The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations , 1997 .
[18] Bharat K. Soni,et al. Handbook of Grid Generation , 1998 .
[19] Fredrik Edelvik,et al. Explicit Hybrid Time Domain Solver for the Maxwell Equations in 3D , 2000, J. Sci. Comput..
[20] Marc Duruflé,et al. Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements , 2010, J. Sci. Comput..
[21] J. Hesthaven,et al. Staircase-free finite-difference time-domain formulation for general materials in complex geometries , 2001 .
[22] N. Weatherill,et al. Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .
[23] Hui,et al. A SET OF SYMMETRIC QUADRATURE RULES ON TRIANGLES AND TETRAHEDRA , 2009 .
[24] Explicit Time Domain Finite Element Methods for Electromagnetics , 2005 .
[25] L. Demkowicz,et al. CONTROL OF GEOMETRY INDUCED ERROR IN hp FINITE ELEMENT(FE) SIMULATIONS I. EVALUATION OF FE ERROR FOR CURVILINEAR GEOMETRIES , 2005 .
[26] A. Huerta,et al. Finite Element Methods for Flow Problems , 2003 .
[27] Antonio Huerta,et al. NURBS-Enhanced Finite Element Method ( NEFEM ) A Seamless Bridge Between CAD and FEM , 2012 .
[28] Francesca Rapetti,et al. Recent Achievements on a DGTD Method for Time-Domain Electromagnetics , 2010, IEEE Transactions on Magnetics.
[29] I. Doležel,et al. Higher-Order Finite Element Methods , 2003 .
[30] Bengt Fornberg,et al. A split step approach for the 3-D Maxwell's equations , 2003 .
[31] C. Balanis. Advanced Engineering Electromagnetics , 1989 .
[32] Oubay Hassan,et al. A low–order unstructured–mesh approach for computational electromagnetics in the time domain , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[33] Chi-Wang Shu,et al. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.
[34] D. A. Dunavant. Efficient symmetrical cubature rules for complete polynomials of high degree over the unit cube , 1986 .
[35] D. A. Dunavant. Economical symmetrical quadrature rules for complete polynomials over a square domain , 1985 .
[36] Mark A. Taylor,et al. An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..
[37] Eloi Ruiz Gironés. Automatic hexahedral meshing algorithms: from structured to unstructured meshes , 2011 .
[38] Pingwen Zhang,et al. Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions , 2004 .
[39] Vijaya Shankar,et al. Unstructured Grid-Based Discontinuous Galerkin Method for Broadband Electromagnetic Simulations , 2004, J. Sci. Comput..
[40] Xia Ji,et al. High‐order DGTD methods for dispersive Maxwell's equations and modelling of silver nanowire coupling , 2007 .
[41] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[42] D. J. Riley,et al. VOLMAX: a solid-model-based, transient volumetric Maxwell solver using hybrid grids , 1997 .
[43] M. König,et al. The Discontinuous Galerkin Time-Domain method for Maxwell’s equations with anisotropic materials , 2010 .
[44] Xevi Roca Navarro. Paving the path towards automatic hexahedral mesh generation , 2009 .
[45] Fernando Reitich,et al. High-order RKDG Methods for Computational Electromagnetics , 2005, J. Sci. Comput..
[46] Nigel P. Weatherill,et al. Hybrid methods for electromagnetic scattering simulations on overlapping grids , 2003 .
[47] K. Morgan,et al. The generation of arbitrary order curved meshes for 3D finite element analysis , 2013 .