Substrate Binding Tunes Conformational Flexibility and Kinetic Stability of an Amino Acid Antiporter*

We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.

[1]  R. Nussinov,et al.  Folding and binding cascades: Dynamic landscapes and population shifts , 2008, Protein science : a publication of the Protein Society.

[2]  D. Torrents,et al.  Projection Structure of a Member of the Amino Acid/Polyamine/Organocation Transporter Superfamily* , 2008, Journal of Biological Chemistry.

[3]  Shunsuke Yajima,et al.  Structure and Molecular Mechanism of a Nucleobase–Cation–Symport-1 Family Transporter , 2008, Science.

[4]  Daniel J. Muller,et al.  Role of extracellular glutamic acids in the stability and energy landscape of bacteriorhodopsin. , 2008, Biophysical journal.

[5]  Deyu Zhu,et al.  Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution. , 2008, Journal of molecular biology.

[6]  A. Engel,et al.  High-throughput single-molecule force spectroscopy for membrane proteins , 2008, Nanotechnology.

[7]  Da-Neng Wang,et al.  Ins and outs of major facilitator superfamily antiporters. , 2008, Annual review of microbiology.

[8]  S. Takada,et al.  Dynamic energy landscape view of coupled binding and protein conformational change: Induced-fit versus population-shift mechanisms , 2008, Proceedings of the National Academy of Sciences.

[9]  Daniel J. Muller,et al.  Transducer binding establishes localized interactions to tune sensory rhodopsin II. , 2008, Structure.

[10]  D. Müller AFM: a nanotool in membrane biology. , 2008 .

[11]  Andreas Engel,et al.  Structure and mechanics of membrane proteins. , 2008, Annual review of biochemistry.

[12]  Daniel J. Muller,et al.  Single-cell force spectroscopy , 2008, Journal of Cell Science.

[13]  Ulrich S. Schwarz,et al.  Probing cellular microenvironments and tissue remodeling by atomic force microscopy , 2008, Pflügers Archiv - European Journal of Physiology.

[14]  Daniel J. Muller,et al.  Point mutations in membrane proteins reshape energy landscape and populate different unfolding pathways. , 2008, Journal of molecular biology.

[15]  Daniel J. Muller,et al.  Mechanical properties of bovine rhodopsin and bacteriorhodopsin: possible roles in folding and function. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[16]  Hongbin Li,et al.  Atomic force microscopy reveals parallel mechanical unfolding pathways of T4 lysozyme: Evidence for a kinetic partitioning mechanism , 2008, Proceedings of the National Academy of Sciences.

[17]  Daniel J. Muller,et al.  Folding and assembly of proteorhodopsin. , 2008, Journal of molecular biology.

[18]  Daniel J. Muller,et al.  Examining the dynamic energy landscape of an antiporter upon inhibitor binding. , 2008, Journal of molecular biology.

[19]  D. Slotboom,et al.  The major amino acid transporter superfamily has a similar core structure as Na+-galactose and Na+-leucine transporters , 2008, Molecular membrane biology.

[20]  Geoffrey Chang,et al.  Flexibility in the ABC transporter MsbA: Alternating access with a twist , 2007, Proceedings of the National Academy of Sciences.

[21]  R. Varadarajan,et al.  Identification and thermodynamic characterization of molten globule states of periplasmic binding proteins. , 2007, Biochemistry.

[22]  Brent A. Gregersen,et al.  Mechanism of Na+/H+ Antiporting , 2007, Science.

[23]  Daniel J. Muller,et al.  Detecting molecular interactions that stabilize, activate and guide ligand-binding of the sodium/proton antiporter MjNhaP1 from Methanococcus jannaschii. , 2007, Journal of structural biology.

[24]  R. Dawson,et al.  Structure and mechanism of ABC transporter proteins. , 2007, Current opinion in structural biology.

[25]  Erik L. L. Sonnhammer,et al.  Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server , 2007, Nucleic Acids Res..

[26]  D. Torrents,et al.  Functional and Structural Characterization of the First Prokaryotic Member of the L-Amino Acid Transporter (LAT) Family , 2007, Journal of Biological Chemistry.

[27]  Daniel J Müller,et al.  Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. , 2007, Annual review of biophysics and biomolecular structure.

[28]  Daniel J. Muller,et al.  Aminosulfonate Modulated pH-induced Conformational Changes in Connexin26 Hemichannels* , 2007, Journal of Biological Chemistry.

[29]  H. Grubmüller,et al.  Fluctuations of primary ubiquitin folding intermediates in a force clamp. , 2007, Journal of structural biology.

[30]  Daniel J. Muller,et al.  Transmembrane helices have rough energy surfaces. , 2007, Journal of the American Chemical Society.

[31]  Kazuei Igarashi,et al.  Identification of the Cadaverine Recognition Site on the Cadaverine-Lysine Antiporter CadB* , 2006, Journal of Biological Chemistry.

[32]  Hendrik Dietz,et al.  Anisotropic deformation response of single protein molecules , 2006, Proceedings of the National Academy of Sciences.

[33]  A. Engel,et al.  Detecting molecular interactions that stabilize native bovine rhodopsin. , 2006, Journal of molecular biology.

[34]  H. Gaub,et al.  Unfolding barriers in bacteriorhodopsin probed from the cytoplasmic and the extracellular side by AFM. , 2006, Structure.

[35]  Matthias Rief,et al.  Temperature softening of a protein in single-molecule experiments. , 2005, Journal of molecular biology.

[36]  Satoru Takahashi,et al.  Redox Imbalance in Cystine/Glutamate Transporter-deficient Mice* , 2005, Journal of Biological Chemistry.

[37]  B. Fuchs,et al.  Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? , 2005, Seminars in cancer biology.

[38]  P. Wolynes,et al.  The experimental survey of protein-folding energy landscapes , 2005, Quarterly Reviews of Biophysics.

[39]  Daniel J. Muller,et al.  Locating ligand binding and activation of a single antiporter , 2005, EMBO reports.

[40]  J. Fort,et al.  The genetics of heteromeric amino acid transporters. , 2005, Physiology.

[41]  M. Palacín,et al.  Identification of LAT4, a Novel Amino Acid Transporter with System L Activity* , 2005, Journal of Biological Chemistry.

[42]  T. McIntosh,et al.  Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. , 2005, Biophysical journal.

[43]  D. Oesterhelt,et al.  Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin. , 2005, Structure.

[44]  Jens Struckmeier,et al.  Hydrodynamic effects in fast AFM single-molecule force measurements , 2005, European Biophysics Journal.

[45]  Hector H. Huang,et al.  Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. , 2005, Journal of molecular biology.

[46]  M. Palacín,et al.  New insights into cystinuria: 40 new mutations, genotype–phenotype correlation, and digenic inheritance causing partial phenotype , 2005, Journal of Medical Genetics.

[47]  Hendrik Dietz,et al.  Exploring the energy landscape of GFP by single-molecule mechanical experiments. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  E. Gouaux,et al.  Structure of a glutamate transporter homologue from Pyrococcus horikoshii , 2004, Nature.

[49]  G. Borsani,et al.  The amino acid transporter asc-1 is not involved in cystinuria. , 2004, Kidney international.

[50]  B. Stoll,et al.  Expression of apical membrane L-glutamate transporters in neonatal porcine epithelial cells along the small intestinal crypt-villus axis. , 2004, American journal of physiology. Gastrointestinal and liver physiology.

[51]  W. Gahl,et al.  Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder , 2004, Nature Genetics.

[52]  A. Bröer,et al.  Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19 , 2004, Nature Genetics.

[53]  Daniel J Müller,et al.  Controlled unfolding and refolding of a single sodium-proton antiporter using atomic force microscopy. , 2004, Journal of molecular biology.

[54]  M. Palacín,et al.  Membrane Topology of System Xc- Light Subunit Reveals a Re-entrant Loop with Substrate-restricted Accessibility* , 2004, Journal of Biological Chemistry.

[55]  J. Lolkema,et al.  Alternating Access and a Pore-Loop Structure in the Na+-Citrate Transporter CitS of Klebsiella pneumoniae* , 2004, Journal of Biological Chemistry.

[56]  K. Zerres,et al.  No evidence for a role of SLC7A10 in 19q13 in the etiology of cystinuria. , 2004, Clinical nephrology.

[57]  C. Wagner,et al.  Expression of heteromeric amino acid transporters along the murine intestine , 2004, The Journal of physiology.

[58]  S. Bröer,et al.  Molecular Cloning of Mouse Amino Acid Transport System B0, a Neutral Amino Acid Transporter Related to Hartnup Disorder* , 2004, Journal of Biological Chemistry.

[59]  Jens Struckmeier,et al.  Probing the energy landscape of the membrane protein bacteriorhodopsin. , 2004, Structure.

[60]  M. Palacín,et al.  Lysinuric protein intolerance: mechanisms of pathophysiology. , 2004, Molecular genetics and metabolism.

[61]  M. Palacín,et al.  Thiol Modification of Cysteine 327 in the Eighth Transmembrane Domain of the Light Subunit xCT of the Heteromeric Cystine/Glutamate Antiporter Suggests Close Proximity to the Substrate Binding Site/Permeation Pathway* , 2004, Journal of Biological Chemistry.

[62]  Hannelore Daniel,et al.  Molecular and integrative physiology of intestinal peptide transport. , 2004, Annual review of physiology.

[63]  M. Palacín,et al.  CATs and HATs: the SLC7 family of amino acid transporters , 2004, Pflügers Archiv.

[64]  M. Palacín,et al.  The ancillary proteins of HATs: SLC3 family of amino acid transporters , 2004, Pflügers Archiv.

[65]  D. Meredith,et al.  The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond , 2004, Pflügers Archiv.

[66]  A. Bröer,et al.  Cystinuria-specific rBAT(R365W) mutation reveals two translocation pathways in the amino acid transporter rBAT-b0,+AT. , 2004, The Biochemical journal.

[67]  M. Hediger,et al.  The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. , 2003, European journal of pharmacology.

[68]  E. Babu,et al.  Identification of a Novel System L Amino Acid Transporter Structurally Distinct from Heterodimeric Amino Acid Transporters* , 2003, Journal of Biological Chemistry.

[69]  B. Fierz,et al.  Dynamics of unfolded polypeptide chains as model for the earliest steps in protein folding. , 2003, Journal of molecular biology.

[70]  M. Tsurudome,et al.  The targeted disruption of the CD98 gene results in embryonic lethality. , 2003, Biochemical and biophysical research communications.

[71]  M. Nehls,et al.  A mouse model for cystinuria type I. , 2003, Human molecular genetics.

[72]  M. Palacín,et al.  Slc7a9-deficient mice develop cystinuria non-I and cystine urolithiasis. , 2003, Human molecular genetics.

[73]  P. Kalivas,et al.  Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse , 2003, Nature Neuroscience.

[74]  R. Balling,et al.  Targeted Disruption of the Peptide Transporter Pept2 Gene in Mice Defines Its Physiological Role in the Kidney , 2003, Molecular and Cellular Biology.

[75]  K. Zerres,et al.  Genetic variations of the SLC7A9 gene: allele distribution of 13 polymorphic sites in German cystinuria patients and controls. , 2003, Clinical nephrology.

[76]  T. Kiefhaber,et al.  Hammond behavior versus ground state effects in protein folding: evidence for narrow free energy barriers and residual structure in unfolded states. , 2003, Journal of molecular biology.

[77]  D. Torrents,et al.  Basolateral LAT-2 has a major role in the transepithelial flux of L-cystine in the renal proximal tubule cell line OK. , 2003, Journal of the American Society of Nephrology : JASN.

[78]  Jane Clarke,et al.  Hidden complexity in the mechanical properties of titin , 2003, Nature.

[79]  T. Kiefhaber,et al.  Non-linear rate-equilibrium free energy relationships and Hammond behavior in protein folding. , 2002, Biophysical chemistry.

[80]  Dieter Oesterhelt,et al.  Stability of Bacteriorhodopsin α-Helices and Loops Analyzed by Single-Molecule Force Spectroscopy , 2002 .

[81]  R. Rozen,et al.  SLC7A9 mutations in all three cystinuria subtypes. , 2002, Kidney international.

[82]  M. Gallucci,et al.  Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. , 2002, Journal of the American Society of Nephrology : JASN.

[83]  M. Palacín,et al.  rBAT-b(0,+)AT heterodimer is the main apical reabsorption system for cystine in the kidney. , 2002, American journal of physiology. Renal physiology.

[84]  F. Verrey,et al.  Apical heterodimeric cystine and cationic amino acid transporter expressed in MDCK cells. , 2002, American journal of physiology. Renal physiology.

[85]  Y. Kanai,et al.  Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. , 2002, Molecular pharmacology.

[86]  O. Simell,et al.  Expression of normal and mutant GFP-tagged y(+)L amino acid transporter-1 in mammalian cells. , 2002, Biochemical and biophysical research communications.

[87]  Alex Mogilner,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2002 .

[88]  A. Valencia,et al.  Heteromeric amino acid transporters: biochemistry, genetics, and physiology. , 2001, American journal of physiology. Renal physiology.

[89]  D. Beier,et al.  EEG1, a putative transporter expressed during epithelial organogenesis: comparison with embryonic transporter expression during nephrogenesis. , 2001, American journal of physiology. Renal physiology.

[90]  R. Rozen,et al.  Is the SLC7A10 gene on chromosome 19 a candidate locus for cystinuria? , 2001, Molecular genetics and metabolism.

[91]  F. Bates,et al.  Electromechanical limits of polymersomes. , 2001, Physical review letters.

[92]  G. Borsani,et al.  The molecular bases of cystinuria and lysinuric protein intolerance. , 2001, Current opinion in genetics & development.

[93]  Y. Kanai,et al.  Expression Cloning of a Na+-independent Aromatic Amino Acid Transporter with Structural Similarity to H+/Monocarboxylate Transporters* , 2001, The Journal of Biological Chemistry.

[94]  G. Borsani,et al.  Identification and characterisation of human xCT that co-expresses, with 4F2 heavy chain, the amino acid transport activity system xc– , 2001, Pflügers Archiv.

[95]  X. Estivill,et al.  Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria. , 2001, Human molecular genetics.

[96]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[97]  U. Giger,et al.  Canine cystinuria: polymorphism in the canine SLC3A1 gene and identification of a nonsense mutation in cystinuric Newfoundland dogs , 2000, Human Genetics.

[98]  Piotr E. Marszalek,et al.  Stretching single molecules into novel conformations using the atomic force microscope , 2000, Nature Structural Biology.

[99]  L. Kühn,et al.  Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity , 2000, Pflügers Archiv.

[100]  M H Saier,et al.  The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. , 2000, Microbiology.

[101]  C. Sanders,et al.  Misfolding of membrane proteins in health and disease: the lady or the tiger? , 2000, Current opinion in structural biology.

[102]  A. Bröer,et al.  The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. , 2000, The Biochemical journal.

[103]  Y. Kanai,et al.  Transport Properties of a System y+L Neutral and Basic Amino Acid Transporter , 2000, The Journal of Biological Chemistry.

[104]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[105]  Hermann E. Gaub,et al.  Discrete interactions in cell adhesion measured by single-molecule force spectroscopy , 2000, Nature Cell Biology.

[106]  H. Gaub,et al.  Unfolding pathways of individual bacteriorhodopsins. , 2000, Science.

[107]  A. Noguchi,et al.  SLC7A7 genomic structure and novel variants in three Japanese lysinuric protein intolerance families , 2000, Human mutation.

[108]  Liam J. McGuffin,et al.  The PSIPRED protein structure prediction server , 2000, Bioinform..

[109]  Evan Evans,et al.  Dynamic strengths of molecular anchoring and material cohesion in fluid biomembranes , 2000 .

[110]  D. Torrents,et al.  Functional analysis of novel mutations in y(+)LAT-1 amino acid transporter gene causing lysinuric protein intolerance (LPI). , 2000, Human molecular genetics.

[111]  C. Boyd,et al.  Surface Antigen CD98(4F2): Not a Single Membrane Protein, But a Family of Proteins with Multiple Functions , 2000, The Journal of Membrane Biology.

[112]  J. Huneau,et al.  Protein metabolism and the gut , 2000, Current opinion in clinical nutrition and metabolic care.

[113]  I. Paulsen,et al.  New Glycoprotein-Associated Amino Acid Transporters , 1999, The Journal of Membrane Biology.

[114]  A. Oberhauser,et al.  Single protein misfolding events captured by atomic force microscopy , 1999, Nature Structural Biology.

[115]  M. Hediger Glutamate transporters in kidney and brain. , 1999, American journal of physiology. Renal physiology.

[116]  X. Estivill,et al.  Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT , 1999, Nature Genetics.

[117]  T. Kiefhaber,et al.  The speed limit for protein folding measured by triplet-triplet energy transfer. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[118]  D. Torrents,et al.  Identification of a Membrane Protein, LAT-2, That Co-expresses with 4F2 Heavy Chain, an L-type Amino Acid Transport Activity with Broad Specificity for Small and Large Zwitterionic Amino Acids* , 1999, The Journal of Biological Chemistry.

[119]  T. Ishii,et al.  Cloning and Expression of a Plasma Membrane Cystine/Glutamate Exchange Transporter Composed of Two Distinct Proteins* , 1999, The Journal of Biological Chemistry.

[120]  J. Clarke,et al.  Mechanical and chemical unfolding of a single protein: a comparison. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[121]  D. Torrents,et al.  Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene , 1999, Nature Genetics.

[122]  G. Borsani,et al.  SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance , 1999, Nature Genetics.

[123]  L. Kühn,et al.  Amino acid transport of y+L‐type by heterodimers of 4F2hc/CD98 and members of the glycoprotein‐associated amino acid transporter family , 1999, The EMBO journal.

[124]  D. Torrents,et al.  Identification and Characterization of a Membrane Protein (y+L Amino Acid Transporter-1) That Associates with 4F2hc to Encode the Amino Acid Transport Activity y+L , 1998, The Journal of Biological Chemistry.

[125]  O. Simell,et al.  Genetic homogeneity of lysinuric protein intolerance , 1998, European Journal of Human Genetics.

[126]  M. Palacín,et al.  Molecular biology of mammalian plasma membrane amino acid transporters. , 1998, Physiological reviews.

[127]  R. Rozen,et al.  Molecular genetics of cystinuria: Mutation analysis of SLC3A1 and evidence for another gene in the Type I (silent) phenotype , 1998 .

[128]  I. West,et al.  Ligand conduction and the gated-pore mechanism of transmembrane transport. , 1997, Biochimica et biophysica acta.

[129]  J. Janzen,et al.  Glutamate transporter EAAC‐1‐deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration , 1997, The EMBO journal.

[130]  Masahiko Watanabe,et al.  Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. , 1997, Science.

[131]  V. Ganapathy,et al.  Molecular and functional characterization of intestinal Na(+)-dependent neutral amino acid transporter B0. , 1997, The American journal of physiology.

[132]  O. Simell,et al.  Lysinuric protein intolerance (LPI) gene maps to the long arm of chromosome 14. , 1997, American journal of human genetics.

[133]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[134]  F. Lang,et al.  An Intracellular Trafficking Defect in Type I Cystinuria rBAT Mutants M467T and M467K* , 1997, The Journal of Biological Chemistry.

[135]  E. Evans,et al.  Dynamic strength of molecular adhesion bonds. , 1997, Biophysical journal.

[136]  X. Estivill,et al.  Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1. , 1997, American journal of human genetics.

[137]  S. Bale,et al.  Molecular analysis of cystinuria in Libyan Jews: exclusion of the SLC3A1 gene and mapping of a new locus on 19q. , 1997, American journal of human genetics.

[138]  J. Gelpí,et al.  Obligatory Amino Acid Exchange via Systems bo,+-like and y+L-like , 1996, The Journal of Biological Chemistry.

[139]  Y. Kanai,et al.  Cloning and Functional Characterization of a System ASC-like Na+-dependent Neutral Amino Acid Transporter* , 1996, The Journal of Biological Chemistry.

[140]  M. Hegner,et al.  Specific antigen/antibody interactions measured by force microscopy. , 1996, Biophysical journal.

[141]  X. Estivill,et al.  Genetic heterogeneity in cystinuria: the SLC3A1 gene is linked to type I but not to type III cystinuria. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[142]  M. Gallucci,et al.  Molecular genetics of cystinuria: identification of four new mutations and seven polymorphisms, and evidence for genetic heterogeneity. , 1995, American journal of human genetics.

[143]  T. Noumi,et al.  Essential aspartic acid residues, Asp‐133, Asp‐163 and Asp‐164, in the transmembrane helices of a Na+/H+ antiporter (NhaA) from Escherichia coli , 1995, FEBS letters.

[144]  D. Yee,et al.  Principles of protein folding — A perspective from simple exact models , 1995, Protein science : a publication of the Protein Society.

[145]  J. Onuchic,et al.  Navigating the folding routes , 1995, Science.

[146]  Gil U. Lee,et al.  Direct measurement of the forces between complementary strands of DNA. , 1994, Science.

[147]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[148]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[149]  X. Estivill,et al.  Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine , 1994, Nature Genetics.

[150]  S. Weremowicz,et al.  Assignment of the gene coding for the human high-affinity glutamate transporter EAAC1 to 9p24: potential role in dicarboxylic aminoaciduria and neurodegenerative disorders. , 1994, Genomics.

[151]  David A. Kidwell,et al.  Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy , 1994 .

[152]  M. Palacín,et al.  rBAT, related to L-cysteine transport, is localized to the microvilli of proximal straight tubules, and its expression is regulated in kidney by development. , 1993, The Journal of biological chemistry.

[153]  A. Fersht,et al.  Application of physical organic chemistry to engineered mutants of proteins: Hammond postulate behavior in the transition state of protein folding. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[154]  P. Goodyer,et al.  Prospective analysis and classification of patients with cystinuria identified in a newborn screening program. , 1993, The Journal of pediatrics.

[155]  M. Hediger,et al.  Primary structure and functional characterization of a high-affinity glutamate transporter , 1992, Nature.

[156]  E. Seeberg,et al.  Cloning and expression of a rat brain L-glutamate transporter , 1992, Nature.

[157]  W. Gruszecki,et al.  Orientation of xanthophylls in phosphatidylcholine multibilayers. , 1990, Biochimica et biophysica acta.

[158]  S. Silbernagl The renal handling of amino acids and oligopeptides. , 1988, Physiological reviews.

[159]  C. Laberge,et al.  The Hartnup phenotype: Mendelian transport disorder, multifactorial disease. , 1987, American journal of human genetics.

[160]  S. Silbernagl,et al.  Molecular specificity of the tubular resorption of “acidic” amino acids , 1983, Pflügers Archiv.

[161]  S. Silbernagl Kinetics and localization of tubular resorption of “acidic” amino acids , 1983, Pflügers Archiv.

[162]  C. Liang,et al.  Sodium gradient- and sodium plus potassium gradient-dependentl-glutamate uptake in renal basolateral membrane vesicles , 1981, The Journal of Membrane Biology.

[163]  O. Simell,et al.  BASOLATERAL-MEMBRANE TRANSPORT DEFECT FOR LYSINE IN LYSINURIC PROTEIN INTOLERANCE , 1980, The Lancet.

[164]  P. McNamara,et al.  Glutamine and glutamic acid uptake by rat renal brushborder membrane vesicles , 1978, The Journal of Membrane Biology.

[165]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[166]  B. Lemieux,et al.  Dicarboxylic aminoaciduria: an inborn error of amino acid conservation. , 1977, The Journal of pediatrics.

[167]  A. Fujimoto,et al.  Lysine malabsorption syndrome: a new type of transport defect. , 1976, Pediatrics.

[168]  J. Lloyd,et al.  Absorption of Amino Acids and Peptides in a Child with a Variant of Hartnup Disease and Coexistent Coeliac Disease , 1972, Archives of disease in childhood.

[169]  J. L. Durant,et al.  Familial iminoglycinuria. An inborn error of renal tubular transport. , 1968, The New England journal of medicine.

[170]  H. Harris,et al.  Hereditary pellagra-like skin rash with temporary cerebellar ataxia, constant renal amino-aciduria, and other bizarre biochemical features. , 1956, Lancet.

[171]  Daniel J Müller,et al.  Atomic force microscopy and spectroscopy of native membrane proteins , 2007, Nature Protocols.

[172]  P. Söderkvist,et al.  Mutation analysis of SLC7A9 in cystinuria patients in Sweden. , 2003, Genetic testing.

[173]  Daniel J Müller,et al.  Imaging and manipulation of biological structures with the AFM. , 2002, Micron.

[174]  J. Kim,et al.  The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location. , 2002, Genomics.

[175]  G. Borsani,et al.  Structure of the SLC7A7 gene and mutational analysis of patients affected by lysinuric protein intolerance. , 2000, American journal of human genetics.

[176]  R. Nussinov,et al.  Folding funnels, binding funnels, and protein function , 1999, Protein science : a publication of the Protein Society.

[177]  E. Evans Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. , 1998, Faraday discussions.

[178]  M. Nagao,et al.  [Lysinuric protein intolerance and other cationic aminoacidurias]. , 1998, Ryoikibetsu shokogun shirizu.

[179]  K. Dill,et al.  From Levinthal to pathways to funnels , 1997, Nature Structural Biology.

[180]  M. Coady,et al.  rBAT is an Amino Acid Exchanger with Variable Stoichiometry , 1996, The Journal of Membrane Biology.

[181]  H. Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[182]  Matthias Rief,et al.  Sensing specific molecular interactions with the atomic force microscope , 1995 .

[183]  S. Kowalewski,et al.  [An isolated defect of the tubular cystine reabsorption in a family with idiopathic hypoparathyroidism]. , 1967, Klinische Wochenschrift.

[184]  George S. Hammond,et al.  A Correlation of Reaction Rates , 1955 .