Wetland inundation monitoring by the synergistic use of ENVISAT/ASAR imagery and ancilliary spatial data

Abstract Wetlands are among the most ecologically important ecosystems on Earth and their sustainability depends critically on the water resources. In a scenario of climate change and increased anthropogenic pressure, detailed monitoring of the water resources provides a fundamental tool to assess the ecosystem health and identify potential threats. Donana wetlands, in Southwest Spain, dry out every summer and progressively flood in fall and winter to a maximum extent of 30,000 ha. The wetland filling up process was monitored in detail during the 2006–2007 hydrologic cycle by means of twenty-one Envisat/ASAR scenes, acquired at different incidence angles in order to maximize the observation frequency. Flood mapping from the two uncorrelated ASAR channel data alone was proved unfeasible due to the complex casuistic of Donana cover backscattering. This study addresses the synergistic utilization of the ASAR data together with Donana's digital elevation model and vegetation map in order to achieve flood mapping. Filtering and clustering algorithms were developed for the automated generation of Donana flood maps from the ASAR images. The use of irregular filtering neighborhoods adapted to the elevation contours drastically improved the ASAR image filtering. Edge preservation was excellent, since natural edges closely follow terrain contours. Isotropic neighborhoods were assumed of a single class and their intensities were averaged. As a result, intensity fluctuations due to speckle and texture over areas of the same cover type were smoothed remarkably. The clustering and classification algorithm operate on individual sub-basins, as the pixel elevation is more accurately related to the cover classes within them. Vegetation and elevation maps plus knowledge of Donana backscattering characteristics from preceding studies were initially used to select seed pixels with high confidence on their class membership. Next, a region growing algorithm extends the seed regions with new pixels based on their planimmetric adjacency and backscattering Mahalanobis distance to the seeds. During the seed region growth, new pixels' possible classes are not constrained to their cover type according to the vegetation map, so the algorithm is able to capture temporal changes in the vegetation spatial distribution. Comparison of the resultant classification and concurrent ground truth yielded 92% of flood mapping accuracy. The flood mapping method is applicable to the available ASAR images of Donana from six other hydrologic cycles.

[1]  Eloy M. Castellanos,et al.  Clonal growth and tiller demography of the invader cordgrass Spartina densiflora brongn. At two contrasting habitats in SW European salt marshes , 2009, Wetlands.

[2]  J. Castillo,et al.  Ecophysiology of tidal and non-tidal populations of the invading cordgrass Spartina densiflora: seasonal and diurnal patterns in a Mediterranean climate , 2003 .

[3]  Paul D. Bates,et al.  Near Real-Time Flood Detection in Urban and Rural Areas Using High-Resolution Synthetic Aperture Radar Images , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Enric Ibáñez Martínez Validación de Modelos Digitales del Terreno de precisión a partir de datos Láser Escáner Aerotransportado; Aplicación a la Marisma del Parque Nacional de Doñana , 2008 .

[5]  Eric Pottier,et al.  Mapping dynamic wetland processes with a one year RADARSAT-2 quad pol time-series , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[6]  Robert Woodruff,et al.  Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery , 1997 .

[7]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[8]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[9]  Juan Ignacio García Viñas,et al.  La vegetación en la marisma del Parque Nacional de Doñana en relación con su régimen hidráulico , 2005 .

[10]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  E. Nezry,et al.  Detection Of Structural And Textural Features For Sar Images Filtering , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[12]  Thuy Le Toan,et al.  Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results , 1997, IEEE Trans. Geosci. Remote. Sens..

[13]  Carlos López-Martínez,et al.  Local texture stationarity indicator for filtering DoÑana wetlands SAR images , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[14]  Yong Wang,et al.  Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar , 1995, IEEE Trans. Geosci. Remote. Sens..

[15]  P. Bates,et al.  The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods , 2011 .

[16]  Ridha Touzi,et al.  A review of speckle filtering in the context of estimation theory , 2002, IEEE Trans. Geosci. Remote. Sens..

[17]  Bruce R. Forsberg,et al.  The use of spaceborne radar data to model inundation patterns and trace gas emissions in the central Amazon floodplain , 2002 .

[18]  Yong Wang,et al.  Understanding the radar backscattering from flooded and nonflooded Amazonian forests: Results from canopy backscatter modeling☆ , 1995 .

[19]  Kevin B. Smith,et al.  Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery , 2003 .

[20]  Paolo Ferrazzoli,et al.  Modeling temporal evolution of junco marshes radar signatures , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Ridha Touzi,et al.  Wetland Characterization using Polarimetric RADARSAT-2 Capability , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[22]  John A. Richards,et al.  An explanation of enhanced radar backscattering from flooded forests , 1987 .

[23]  J. Dainty Laser speckle and related phenomena , 1975 .

[24]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Thuy Le Toan,et al.  Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management , 2003 .

[26]  E. Nezry,et al.  Adaptive speckle filters and scene heterogeneity , 1990 .

[27]  M. Dobson,et al.  The use of Imaging radars for ecological applications : A review , 1997 .

[28]  Anthony J. Davy,et al.  Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances , 2000 .

[29]  Eric Pottier,et al.  On the use of fully polarimetric RADARSAT-2 time-series datasets for delineating and monitoring the seasonal dynamics of wetland ecosystem , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[30]  F. Henderson,et al.  Principles and Applications of Imaging Radar , 1998 .

[31]  Anaïs Ramos Hidrometeorología y balance térmico de la marisma de Doñana , 2012 .

[32]  T. L. Toan,et al.  Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data , 2007 .

[33]  Nazzareno Pierdicca,et al.  Soil moisture estimation over vegetated terrains using multitemporal remote sensing data. , 2010 .

[34]  A. Lopes,et al.  A statistical and geometrical edge detector for SAR images , 1988 .

[35]  A. Fung,et al.  Microwave Remote Sensing Active and Passive-Volume III: From Theory to Applications , 1986 .

[36]  C. M. Martín Parque Nacional de Doñana , 2003 .

[37]  Haydee Karszenbaum,et al.  Influence of Flood Conditions and Vegetation Status on the Radar Backscatter of Wetland Ecosystems , 2001 .

[38]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[39]  David Aragonés,et al.  Tratamiento de una serie temporal larga de imágenes Landsat para la cartografía de la inundación histórica de las marismas de Doñana , 2005 .

[40]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[41]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Carlos Lopez-Martinez,et al.  ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana wetlands for flood extent monitoring , 2010 .

[43]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[44]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[45]  Kevin B. Smith,et al.  Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems , 2001 .

[46]  David Aragonés,et al.  Hydroperiod of Doñana marshes: natural or anthropic origin of inundation regime? , 2006 .

[47]  Jong-Sen Lee,et al.  Digital image smoothing and the sigma filter , 1983, Comput. Vis. Graph. Image Process..

[48]  George Nagy,et al.  State of the art in pattern recognition , 1968 .

[49]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[50]  Pablo García-Murillo,et al.  Flora y vegetación de la marisma de Doñana en el marco del proyecto de restauración ecológica Doñana 2005 , 2007, Limnetica.

[51]  L. Clemente,et al.  Las marismas del Parque Nacional de Doñana , 2004 .

[52]  David Aragonés,et al.  Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images. , 2009, Journal of environmental management.

[53]  Nazzareno Pierdicca,et al.  Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation , 2011 .

[54]  A. J. Hails,et al.  Wetlands, biodiversity and the Ramsar Convention : the role of the Convention on wetlands in the conservation and wise use of biodiversity , 1996 .

[55]  Floyd M. Henderson,et al.  Radar detection of wetland ecosystems: a review , 2008 .

[56]  Paolo Ferrazzoli,et al.  Model investigation about the potential of C band SAR in herbaceous wetlands flood monitoring , 2008 .