Detailed molecular dynamics simulations of model biological membranes containing cholesterol.

Detailed molecular dynamics simulations performed to study the nature of lipid raft domains that appear in model membranes are reviewed in this paper. The described simulations were performed on hydrated bilayers containing binary mixtures of cholesterol with phospholipids and also on ternary mixtures containing cholesterol, a phospholipid with a high main transition temperature T(m), and a phospholipid with a low transition temperature T(m). These simulations provide qualitative and semi-quantitative information about cholesterol-lipid interactions and also a testing ground for major assumptions made to explain the nature of lipid rafts in model membranes.

[1]  K. Gawrisch,et al.  Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. , 2006, Biophysical journal.

[2]  P. Somerharju,et al.  Lateral organisation of membrane lipids. The superlattice view. , 1999, Biochimica et biophysica acta.

[3]  A. Kusumi,et al.  Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study. , 2000, Biophysical journal.

[4]  E. Lindahl,et al.  Molecular dynamics simulations of phospholipid bilayers with cholesterol. , 2003, Biophysical journal.

[5]  G. Karlström,et al.  Phase equilibria in the phosphatidylcholine-cholesterol system. , 1987, Biochimica et biophysica acta.

[6]  H L Scott,et al.  Self-consistent mean-field model based on molecular dynamics: application to lipid-cholesterol bilayers. , 2005, The Journal of chemical physics.

[7]  M. Prieto,et al.  Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. , 2003, Biophysical journal.

[8]  H. Heerklotz,et al.  Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins. , 2006, Biophysical journal.

[9]  Ilpo Vattulainen,et al.  Assessing the Nature of Lipid Raft Membranes , 2007, PLoS Comput. Biol..

[10]  Berend Smit,et al.  Mesoscopic models of biological membranes , 2006 .

[11]  Perttu S. Niemelä,et al.  Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine. , 2007, Biophysical journal.

[12]  A Kusumi,et al.  Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study. , 1999, Biophysical journal.

[13]  J. Slotte,et al.  Cholesterol interactions with phospholipids in membranes. , 2002, Progress in lipid research.

[14]  M. Berkowitz,et al.  Molecular dynamics simulations of bilayers containing mixtures of sphingomyelin with cholesterol and phosphatidylcholine with cholesterol. , 2007, The journal of physical chemistry. B.

[15]  Phenomenological model and phase behavior of saturated and unsaturated lipids and cholesterol. , 2008, Biophysical journal.

[16]  Richard W. Pastor,et al.  Molecular dynamics and Monte Carlo simulations of lipid bilayers , 1994 .

[17]  O. Edholm,et al.  Areas of molecules in membranes consisting of mixtures. , 2005, Biophysical journal.

[18]  M. Klein,et al.  Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[19]  T. Róg,et al.  Cholesterol-sphingomyelin interactions: a molecular dynamics simulation study. , 2006, Biophysical journal.

[20]  Robert Vácha,et al.  Biomolecular simulations of membranes: physical properties from different force fields. , 2008, The Journal of chemical physics.

[21]  T. McIntosh,et al.  Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. , 2002, Biophysical journal.

[22]  Kai Simons,et al.  Cholesterol, lipid rafts, and disease. , 2002, The Journal of clinical investigation.

[23]  J. Silvius,et al.  Role of cholesterol in lipid raft formation: lessons from lipid model systems. , 2003, Biochimica et biophysica acta.

[24]  Sagar A. Pandit,et al.  Complexation of phosphatidylcholine lipids with cholesterol. , 2004, Biophysical journal.

[25]  M. Vrljic,et al.  Liquid-liquid immiscibility in membranes. , 2003, Annual review of biophysics and biomolecular structure.

[26]  H. Mcconnell,et al.  Condensed complexes in vesicles containing cholesterol and phospholipids. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[28]  K. Cheng,et al.  Assess the nature of cholesterol–lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers , 2007, Proceedings of the National Academy of Sciences.

[29]  D. C. Mitchell,et al.  Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. , 1998, Biophysical journal.

[30]  de Mendoza J,et al.  Model systems , 1998, Current opinion in chemical biology.

[31]  O. G. Mouritsen,et al.  Off-lattice model for the phase behavior of lipid-cholesterol bilayers. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  G. Feigenson,et al.  Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. , 2001, Biophysical journal.

[33]  Sarah L Veatch,et al.  Miscibility phase diagrams of giant vesicles containing sphingomyelin. , 2005, Physical review letters.

[34]  Marcus Mueller,et al.  Biological and synthetic membranes: What can be learned from a coarse-grained description? , 2006 .

[35]  Eric Jakobsson,et al.  Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation. , 2004, Biophysical journal.

[36]  H. Mcconnell,et al.  Condensed complexes of cholesterol and phospholipids. , 1999, Biochimica et biophysica acta.

[37]  安井 多喜雄,et al.  α-cholesterol の臨床的意義 , 1980 .

[38]  T. McIntosh,et al.  Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. , 2005, Biophysical journal.

[39]  M. Berkowitz,et al.  Molecular dynamics simulations of SOPS and sphingomyelin bilayers containing cholesterol. , 2007, Biophysical journal.

[40]  Sagar A. Pandit,et al.  Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. , 2006, Chemical reviews.

[41]  Eric Jakobsson,et al.  Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. , 2004, Biophysical journal.

[42]  D P Tieleman,et al.  A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. , 1997, Biochimica et biophysica acta.

[43]  R. Cantor Lateral Pressures in Cell Membranes: A Mechanism for Modulation of Protein Function , 1997 .

[44]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[45]  E. Jakobsson,et al.  Cholesterol-induced modifications in lipid bilayers: a simulation study. , 2002, Biophysical journal.

[46]  M. Berkowitz,et al.  Energetics of Cholesterol Transfer between Lipid Bilayers , 2009 .

[47]  Alexander D. MacKerell,et al.  Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesterol. , 2004, Biochemistry.

[48]  O. Mouritsen Theoretical models of phospholipid phase transitions. , 1991, Chemistry and physics of lipids.

[49]  A. Pokorny,et al.  Investigation of Domain Formation in Sphingomyelin/Cholesterol/POPC Mixtures by Fluorescence Resonance Energy Transfer and Monte Carlo Simulations , 2007, Biophysical journal.

[50]  Steve Scheiner,et al.  Fundamental Properties of the CH···O Interaction: Is It a True Hydrogen Bond? , 1999 .

[51]  M. Klein,et al.  Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. , 1995, Biophysical journal.

[52]  K. Gawrisch,et al.  Critical fluctuations in domain-forming lipid mixtures , 2007, Proceedings of the National Academy of Sciences.

[53]  P. Devaux,et al.  Transmembrane Asymmetry and Lateral Domains in Biological Membranes , 2004, Traffic.

[54]  Mihaly Mezei,et al.  Effect of cholesterol on the properties of phospholipid membranes. 4. Interatomic voids. , 2005, The journal of physical chemistry. B.

[55]  L. Pike Rafts defined: a report on the Keystone symposium on lipid rafts and cell function Published, JLR Papers in Press, April 27, 2006. , 2006, Journal of Lipid Research.

[56]  K. Cheng,et al.  Lateral distribution of cholesterol in dioleoylphosphatidylcholine lipid bilayers: cholesterol-phospholipid interactions at high cholesterol limit. , 2004, Biophysical journal.

[57]  R. Winter,et al.  Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study. , 2008, Biophysical journal.

[58]  H. Mcconnell,et al.  Saturated Phospholipids with High Melting Temperatures Form Complexes with Cholesterol in Monolayers , 2000 .

[59]  Kai Simons,et al.  Model systems, lipid rafts, and cell membranes. , 2004, Annual review of biophysics and biomolecular structure.

[60]  Douglas J. Tobias,et al.  Atomic-scale molecular dynamics simulations of lipid membranes , 1997 .

[61]  M. Mezei,et al.  Effect of Cholesterol on the Properties of Phospholipid Membranes. 3. Local Lateral Structure , 2004 .

[62]  G. Feigenson,et al.  A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. , 1999, Biophysical journal.

[63]  Alexander M. Smondyrev,et al.  United atom force field for phospholipid membranes: Constant pressure molecular dynamics simulation of dipalmitoylphosphatidicholine/water system , 1999 .

[64]  R. Epand,et al.  Non-raft forming sphingomyelin-cholesterol mixtures. , 2004, Chemistry and physics of lipids.

[65]  Sarah L Veatch,et al.  Seeing spots: complex phase behavior in simple membranes. , 2005, Biochimica et biophysica acta.

[66]  P. Kinnunen,et al.  Evidence for the lack of a specific interaction between cholesterol and sphingomyelin. , 2004, Biophysical journal.

[67]  J. Hancock,et al.  Lipid rafts: contentious only from simplistic standpoints , 2006, Nature Reviews Molecular Cell Biology.

[68]  Ilpo Vattulainen,et al.  Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. , 2004, Biophysical journal.

[69]  H L Scott,et al.  Combined Monte Carlo and molecular dynamics simulation of hydrated 18:0 sphingomyelin-cholesterol lipid bilayers. , 2004, The Journal of chemical physics.

[70]  M. Mezei,et al.  Effect of Cholesterol on the Properties of Phospholipid Membranes. 1. Structural Features , 2003 .

[71]  A. Smondyrev,et al.  Structure of dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. , 1999, Biophysical journal.