Finite primitive groups and regular orbits of group elements

We prove that if $G$ is a finite primitive permutation group and if $g$ is an element of $G$, then either $g$ has a cycle of length equal to its order, or for some $r$, $m$ and $k$, the group $G \leq \mathrm{Sym}(m) \textrm{wr} \mathrm{Sym}(r)$ preserves the product structure of $r$ direct copies of the natural action of $\mathrm{Sym}(m)$ on $k$-sets. This gives an answer to a question of Siemons and Zalesski and a solution to a conjecture of Giudici, Praeger and the second author.

[1]  D. Holt,et al.  The Maximal Subgroups of the Low-Dimensional Finite Classical Groups , 2013 .

[2]  Pablo Spiga,et al.  On the maximum orders of elements of finite almost simple groups and primitive permutation groups , 2013, 1301.5166.

[3]  Peter J. Cameron,et al.  Projective and Polar Spaces , 1992 .

[4]  Timothy C. Burness Fixed point ratios in actions of finite classical groups, I , 2006 .

[5]  Timothy C. Burness Fixed point ratios in actions of finite classical groups, III , 2007 .

[6]  Peter Brown Kleidman The subgroup structure of some finite simple groups , 1987 .

[7]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[8]  Kay Magaard,et al.  Incidence Matrices, Permutation Characters, and the Minimal Genus of a Permutation Group , 2002, J. Comb. Theory, Ser. A.

[9]  Timothy C. Burness,et al.  On the uniform spread of almost simple linear groups , 2013, Nagoya Mathematical Journal.

[10]  Regular orbits of cyclic subgroups in permutation representations of certain simple groups , 2002 .

[11]  Martin W. Liebeck,et al.  Minimal Degrees of Primitive Permutation Groups, with an Application to Monodromy Groups of Covers of Riemann Surfaces , 1991 .

[12]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups , 1983 .

[13]  Intersections of Matrix Algebras and Permutation Representations of PSL(n, q) , 2000 .

[14]  G. Robin Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n , 1983 .

[15]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[16]  R. Guralnick,et al.  Probabilistic Generation of Finite Simple Groups , 2000 .

[17]  On Regular Orbits of Elements of Classical Groups in Their Permutation Representations , 2011 .

[18]  Michael Aschbacher,et al.  On the maximal subgroups of the finite classical groups , 1984 .

[19]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[20]  S. Guest,et al.  A REMARK ON THE PERMUTATION REPRESENTATIONS AFFORDED BY THE EMBEDDINGS OF IN , 2013, 1304.0852.

[21]  Cheryl E. Praeger,et al.  Finite primitive permutation groups and regular cycles of their elements , 2013 .

[22]  V. D. Mazurov,et al.  Minimal permutation representations of finite simple orthogonal groups , 1995 .

[23]  Peter C. C. Wang On incidence matrices , 1970 .

[24]  Cheryl E. Praeger,et al.  A Reduction Algorithm for Large-Base Primitive Permutation Groups , 2006 .

[25]  Cheryl E. Praeger,et al.  Minimal degree of primitive permutation groups , 1976 .

[26]  Thomas Breuer,et al.  Probabilistic generation of finite simple groups, II , 2000 .

[27]  P. Cameron FINITE PERMUTATION GROUPS AND FINITE SIMPLE GROUPS , 1981 .

[28]  P. B. Kleidman The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ8+(q) and of their automorphism groups , 1987 .