Lyapunov exponents from time series

[1]  Alston S. Householder,et al.  Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.

[2]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[3]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[4]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[5]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[6]  F. Takens Detecting strange attractors in turbulence , 1981 .

[7]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[8]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[9]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[10]  E. J. Kostelich,et al.  Comparison of Algorithms for Determining Lyapunov Exponents from Experimental Data , 1986 .

[11]  Gottfried Mayer-Kress,et al.  Dimensions and Entropies in Chaotic Systems , 1986 .

[12]  Werner Lauterborn,et al.  Evidence for a low-dimensional strange attractor in acoustic turbulence , 1986 .

[13]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[14]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[15]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[16]  P. F. Meier,et al.  Evaluation of Lyapunov exponents and scaling functions from time series , 1988 .

[17]  H. Schuster,et al.  Proper choice of the time delay for the analysis of chaotic time series , 1989 .

[18]  Andrew M. Fraser,et al.  Information and entropy in strange attractors , 1989, IEEE Trans. Inf. Theory.

[19]  Lauterborn,et al.  Liapunov exponents from a time series of acoustic chaos. , 1989, Physical review. A, General physics.

[20]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[21]  G. Baier,et al.  Maximum hyperchaos in generalized Hénon maps , 1990 .

[22]  K. Briggs An improved method for estimating Liapunov exponents of chaotic time series , 1990 .

[23]  H. Abarbanel,et al.  Lyapunov exponents from observed time series. , 1990, Physical review letters.

[24]  Ulrich Parlitz,et al.  Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .

[25]  Michael Klein,et al.  Discrete Steps up the Dynamic Hierarchy , 1991 .