TiO2-based Photocatalysis: Surface Defects, Oxygen and Charge Transfer
暂无分享,去创建一个
[1] C. Peden,et al. Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites , 1998 .
[2] K. Asai,et al. Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2 , 2003 .
[3] Alexei M. Tyryshkin,et al. The Influence of the Bulk Reduction State on the Surface Structure and Morphology of Rutile TiO2(110) Single Crystals , 2000 .
[4] K. Asai,et al. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies , 2003 .
[5] M. A. Henderson. A surface perspective on self-diffusion in rutile TiO2 , 1999 .
[6] J. Yates,et al. Light-induced charge separation in anatase TiO2 particles. , 2005, The journal of physical chemistry. B.
[7] M. Mazúr,et al. Investigations of metal-doped titanium dioxide photocatalysts , 2002 .
[8] G. Pacchioni,et al. Origin of the different photoactivity of N-doped anatase and rutile TiO2 , 2004 .
[9] J. Yates,et al. Defect Sites on TiO2(110). Detection by O2 Photodesorption , 1997 .
[10] U. Diebold,et al. Morphology change of oxygen-restructured TiO 2 (110) surfaces by UHV annealing: Formation of a low-temperature (1×2) structure , 2000 .
[11] B. L. Maschhoff,et al. Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities , 1992 .
[12] Sakae Tanemura,et al. The improvement of optical reactivity for TiO2 thin films by N2–H2 plasma surface-treatment , 2004 .
[13] H. Onishi,et al. Water- and Oxygen-Induced Decay Kinetics of Photogenerated Electrons in TiO2 and Pt/TiO2: A Time-Resolved Infrared Absorption Study , 2001 .
[14] M. A. Henderson. Mechanism for the bulk-assisted reoxidation of ion sputtered TiO2 surfaces: diffusion of oxygen to the surface or titanium to the bulk? , 1995 .
[15] M. Lazzeri,et al. Oxygen vacancy mediated adsorption and reactions of molecular oxygen on theTiO2(110)surface , 2003 .
[16] J. Yates,et al. The photochemical identification of two chemisorption states for molecular oxygen on TiO2(110) , 1995 .
[17] G. Briggs,et al. High resolution scanning tunnelling microscopy of the rutile TiO2(110) surface , 1998 .
[18] G. Rohrer,et al. ANISOTROPIC PHOTOCHEMICAL REACTIVITY OF BULK TIO2 CRYSTALS , 1998 .
[19] Renald Schaub,et al. Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2(110) Surface , 2002, Science.
[20] Iwasawa,et al. Dynamic visualization of a metal-oxide-surface/gas-phase reaction: Time-resolved observation by scanning tunneling microscopy at 800 K. , 1996, Physical review letters.
[21] Bin Li,et al. Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates , 2004 .
[22] Generation of superoxide ions at oxide surfaces , 1999 .
[23] M. Engelhard,et al. The adsorption of liquid and vapor water on TiO2(110) surfaces : the role of defects , 1995 .
[24] R. Asahi,et al. Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping , 2001 .
[25] Molecular oxygen-mediated vacancy diffusion on TiO2(110)-new studies of the proposed mechanism , 2004 .
[26] S. Martin,et al. Environmental Applications of Semiconductor Photocatalysis , 1995 .
[27] J. Yates,et al. Defect Sites on TiO 2 (110). Detection by O 2 Photodesorption , 1997 .
[28] John B. Asbury,et al. DIRECT OBSERVATION OF ULTRAFAST ELECTRON INJECTION FROM COUMARIN 343 TO TIO2 NANOPARTICLES BY FEMTOSECOND INFRARED SPECTROSCOPY , 1998 .
[29] P. Feibelman,et al. Ion desorption by core-hole Auger decay , 1978 .
[30] G. Rohrer,et al. Orientation Dependence of Photochemical Reactions on TiO2 Surfaces , 1998 .
[31] W. Göpel,et al. The geometric structure of intrinsic defects at TiO2(110) surfaces: an STM study , 1995 .
[32] J. Yates,et al. THE ADSORPTION AND PHOTODESORPTION OF OXYGEN ON THE TIO2(110) SURFACE , 1995 .
[33] M. A. Henderson. Evidence for bicarbonate formation on vacuum annealed TiO2(110) resulting from a precursor-mediated interaction between CO2 and H2O , 1998 .
[34] P. D. Fleischauer,et al. Quantum yields of silver ion reduction on titanium dioxide and zinc oxide single crystals , 1972 .
[35] M. Zorn,et al. Relationship concerning the nature and concentration of Fe(III) species on the surface of TiO2 particles and photocatalytic activity of the catalyst , 2003 .
[36] Hiroshi Onishi,et al. Time-resolved infrared absorption spectroscopy of photogenerated electrons in platinized TiO2 particles , 2001 .
[37] R. Asahi,et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.
[38] C. Peden,et al. Interaction of Molecular Oxygen with the Vacuum-Annealed TiO2(110) Surface: Molecular and Dissociative Channels , 1999 .
[39] M. Kuhn,et al. Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study , 1998 .
[40] Oliver Diwald,et al. Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light , 2004 .
[41] Donald R. Baer,et al. Creation of variable concentrations of defects on TiO2(110) using low-density electron beams , 1994 .
[42] Ulrike Diebold,et al. The surface science of titanium dioxide , 2003 .
[43] J. Krause,et al. Theoretical study of the UV-induced desorption of molecular oxygen from the reduced TiO2 (110) surface , 2003 .
[44] A. Fujishima,et al. Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.
[45] J. Yates,et al. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .
[46] C. Perkins,et al. Photodesorption and Trapping of Molecular Oxygen at the TiO2(110)-Water Ice Interface † , 2001 .
[47] J. T. Ranney,et al. The Surface Science of Metal Oxides , 1995 .
[48] J. Yates,et al. Electron exchange on TiO2–SiO2 photocatalysts during O2 and organic molecule adsorption – the role of adsorbate electrophilicity , 2003 .
[49] Xinyong Li,et al. Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles , 2003 .
[50] Steven H. Szczepankiewicz,et al. Slow Surface Charge Trapping Kinetics on Irradiated TiO2 , 2002 .
[51] J. Yates,et al. The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals , 2004 .
[52] J. Yates,et al. CO2 as a probe for monitoring the surface defects on TiO2(110): Temperature-programmed desorption , 2003 .
[53] M. P. Sears,et al. Oxygen-induced restructuring of the TiO2(110) surface: a comprehensive study , 1999 .
[54] J. Krause,et al. Theoretical study of the interaction of molecular oxygen with a reduced TiO2 surface , 2002 .
[55] S. Martin,et al. Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles , 1994 .
[56] G. Thornton,et al. Added row model of TiO2(110)1x2 , 1998 .
[57] 贾立山,et al. XPS Study of Copper Doping TiO2 Photocatalyst , 2003 .
[58] M. Anpo. Utilization of TiO2 photocatalysts in green chemistry , 2000 .
[59] J. Yates,et al. STM studies of defect production on the -(1×1) and -(1×2) surfaces induced by UV irradiation , 2003 .
[60] W. Ingler,et al. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.
[61] U. Diebold,et al. Oxygen-induced restructuring of rutile TiO2(110): formation mechanism, atomic models, and influence on surface chemistry , 1999 .
[62] R. D. Ramsier,et al. Electron-stimulated desorption: Principles and applications , 1991 .
[63] J. Yates,et al. TI3+ DEFECT SITES ON TIO2(110) : PRODUCTION AND CHEMICAL DETECTION OF ACTIVE SITES , 1994 .