TiO2-based Photocatalysis: Surface Defects, Oxygen and Charge Transfer

[1]  C. Peden,et al.  Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites , 1998 .

[2]  K. Asai,et al.  Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2 , 2003 .

[3]  Alexei M. Tyryshkin,et al.  The Influence of the Bulk Reduction State on the Surface Structure and Morphology of Rutile TiO2(110) Single Crystals , 2000 .

[4]  K. Asai,et al.  Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies , 2003 .

[5]  M. A. Henderson A surface perspective on self-diffusion in rutile TiO2 , 1999 .

[6]  J. Yates,et al.  Light-induced charge separation in anatase TiO2 particles. , 2005, The journal of physical chemistry. B.

[7]  M. Mazúr,et al.  Investigations of metal-doped titanium dioxide photocatalysts , 2002 .

[8]  G. Pacchioni,et al.  Origin of the different photoactivity of N-doped anatase and rutile TiO2 , 2004 .

[9]  J. Yates,et al.  Defect Sites on TiO2(110). Detection by O2 Photodesorption , 1997 .

[10]  U. Diebold,et al.  Morphology change of oxygen-restructured TiO 2 (110) surfaces by UHV annealing: Formation of a low-temperature (1×2) structure , 2000 .

[11]  B. L. Maschhoff,et al.  Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities , 1992 .

[12]  Sakae Tanemura,et al.  The improvement of optical reactivity for TiO2 thin films by N2–H2 plasma surface-treatment , 2004 .

[13]  H. Onishi,et al.  Water- and Oxygen-Induced Decay Kinetics of Photogenerated Electrons in TiO2 and Pt/TiO2: A Time-Resolved Infrared Absorption Study , 2001 .

[14]  M. A. Henderson Mechanism for the bulk-assisted reoxidation of ion sputtered TiO2 surfaces: diffusion of oxygen to the surface or titanium to the bulk? , 1995 .

[15]  M. Lazzeri,et al.  Oxygen vacancy mediated adsorption and reactions of molecular oxygen on theTiO2(110)surface , 2003 .

[16]  J. Yates,et al.  The photochemical identification of two chemisorption states for molecular oxygen on TiO2(110) , 1995 .

[17]  G. Briggs,et al.  High resolution scanning tunnelling microscopy of the rutile TiO2(110) surface , 1998 .

[18]  G. Rohrer,et al.  ANISOTROPIC PHOTOCHEMICAL REACTIVITY OF BULK TIO2 CRYSTALS , 1998 .

[19]  Renald Schaub,et al.  Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2(110) Surface , 2002, Science.

[20]  Iwasawa,et al.  Dynamic visualization of a metal-oxide-surface/gas-phase reaction: Time-resolved observation by scanning tunneling microscopy at 800 K. , 1996, Physical review letters.

[21]  Bin Li,et al.  Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates , 2004 .

[22]  Generation of superoxide ions at oxide surfaces , 1999 .

[23]  M. Engelhard,et al.  The adsorption of liquid and vapor water on TiO2(110) surfaces : the role of defects , 1995 .

[24]  R. Asahi,et al.  Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping , 2001 .

[25]  Molecular oxygen-mediated vacancy diffusion on TiO2(110)-new studies of the proposed mechanism , 2004 .

[26]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[27]  J. Yates,et al.  Defect Sites on TiO 2 (110). Detection by O 2 Photodesorption , 1997 .

[28]  John B. Asbury,et al.  DIRECT OBSERVATION OF ULTRAFAST ELECTRON INJECTION FROM COUMARIN 343 TO TIO2 NANOPARTICLES BY FEMTOSECOND INFRARED SPECTROSCOPY , 1998 .

[29]  P. Feibelman,et al.  Ion desorption by core-hole Auger decay , 1978 .

[30]  G. Rohrer,et al.  Orientation Dependence of Photochemical Reactions on TiO2 Surfaces , 1998 .

[31]  W. Göpel,et al.  The geometric structure of intrinsic defects at TiO2(110) surfaces: an STM study , 1995 .

[32]  J. Yates,et al.  THE ADSORPTION AND PHOTODESORPTION OF OXYGEN ON THE TIO2(110) SURFACE , 1995 .

[33]  M. A. Henderson Evidence for bicarbonate formation on vacuum annealed TiO2(110) resulting from a precursor-mediated interaction between CO2 and H2O , 1998 .

[34]  P. D. Fleischauer,et al.  Quantum yields of silver ion reduction on titanium dioxide and zinc oxide single crystals , 1972 .

[35]  M. Zorn,et al.  Relationship concerning the nature and concentration of Fe(III) species on the surface of TiO2 particles and photocatalytic activity of the catalyst , 2003 .

[36]  Hiroshi Onishi,et al.  Time-resolved infrared absorption spectroscopy of photogenerated electrons in platinized TiO2 particles , 2001 .

[37]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[38]  C. Peden,et al.  Interaction of Molecular Oxygen with the Vacuum-Annealed TiO2(110) Surface: Molecular and Dissociative Channels , 1999 .

[39]  M. Kuhn,et al.  Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study , 1998 .

[40]  Oliver Diwald,et al.  Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light , 2004 .

[41]  Donald R. Baer,et al.  Creation of variable concentrations of defects on TiO2(110) using low-density electron beams , 1994 .

[42]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[43]  J. Krause,et al.  Theoretical study of the UV-induced desorption of molecular oxygen from the reduced TiO2 (110) surface , 2003 .

[44]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[45]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[46]  C. Perkins,et al.  Photodesorption and Trapping of Molecular Oxygen at the TiO2(110)-Water Ice Interface † , 2001 .

[47]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[48]  J. Yates,et al.  Electron exchange on TiO2–SiO2 photocatalysts during O2 and organic molecule adsorption – the role of adsorbate electrophilicity , 2003 .

[49]  Xinyong Li,et al.  Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles , 2003 .

[50]  Steven H. Szczepankiewicz,et al.  Slow Surface Charge Trapping Kinetics on Irradiated TiO2 , 2002 .

[51]  J. Yates,et al.  The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals , 2004 .

[52]  J. Yates,et al.  CO2 as a probe for monitoring the surface defects on TiO2(110): Temperature-programmed desorption , 2003 .

[53]  M. P. Sears,et al.  Oxygen-induced restructuring of the TiO2(110) surface: a comprehensive study , 1999 .

[54]  J. Krause,et al.  Theoretical study of the interaction of molecular oxygen with a reduced TiO2 surface , 2002 .

[55]  S. Martin,et al.  Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles , 1994 .

[56]  G. Thornton,et al.  Added row model of TiO2(110)1x2 , 1998 .

[57]  贾立山,et al.  XPS Study of Copper Doping TiO2 Photocatalyst , 2003 .

[58]  M. Anpo Utilization of TiO2 photocatalysts in green chemistry , 2000 .

[59]  J. Yates,et al.  STM studies of defect production on the -(1×1) and -(1×2) surfaces induced by UV irradiation , 2003 .

[60]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[61]  U. Diebold,et al.  Oxygen-induced restructuring of rutile TiO2(110): formation mechanism, atomic models, and influence on surface chemistry , 1999 .

[62]  R. D. Ramsier,et al.  Electron-stimulated desorption: Principles and applications , 1991 .

[63]  J. Yates,et al.  TI3+ DEFECT SITES ON TIO2(110) : PRODUCTION AND CHEMICAL DETECTION OF ACTIVE SITES , 1994 .