Fully Dynamic Algorithm for Recognition and Modular Decomposition of Permutation Graphs

This paper considers the problem of maintaining a compact representation (O(n) space) of permutation graphs under vertex and edge modifications (insertion or deletion). That representation allows us to answer adjacency queries in O(1) time. The approach is based on a fully dynamic modular decomposition algorithm for permutation graphs that works in O(n) time per edge and vertex modification. We thereby obtain a fully dynamic algorithm for the recognition of permutation graphs.

[1]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[2]  Roded Sharan,et al.  A Fully Dynamic Algorithm for Recognizing and Representing Proper Interval Graphs , 1999, SIAM J. Comput..

[3]  Jeremy P. Spinrad,et al.  Linear-time transitive orientation , 1997, SODA '97.

[4]  Leonidas Palios,et al.  A Fully Dynamic Algorithm for the Recognition of P4-Sparse Graphs , 2006, WG.

[5]  Jeremy P. Spinrad,et al.  Incremental modular decomposition , 1989, JACM.

[6]  Takeaki Uno,et al.  Fast Algorithms to Enumerate All Common Intervals of Two Permutations , 1997, Algorithmica.

[7]  Christophe Paul,et al.  Fully Dynamic Algorithm for Recognition and Modular Decomposition of Permutation Graphs , 2005, WG.

[8]  Louis Ibarra,et al.  Fully dynamic algorithms for chordal graphs , 1999, SODA '99.

[9]  TamassiaRoberto,et al.  On-Line Planarity Testing , 1996 .

[10]  Christophe Paul,et al.  Fully dynamic recognition algorithm and certificate for directed cographs , 2006, Discret. Appl. Math..

[11]  Fabien de Montgolfier,et al.  De'composition Modulaire des Graphes. The'orie, Extensions et Algorithmes , 2003 .

[12]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[13]  Mathieu Raffinot,et al.  Computing Common Intervals of K Permutations, with Applications to Modular Decomposition of Graphs , 2005, SIAM J. Discret. Math..

[14]  R. Möhring Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions , 1985 .

[15]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[16]  F. Radermacher,et al.  Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .

[17]  David Eppstein,et al.  Separator-Based Sparsification II: Edge and Vertex Connectivity , 1999, SIAM J. Comput..

[18]  Andrzej Ehrenfeucht,et al.  An O(n²) Divide-and-Conquer Algorithm for the Prime Tree Decomposition of Two-Structures and Modular Decomposition of Graphs , 1994, J. Algorithms.

[19]  Michel Habib,et al.  Revisiting T. Uno and M. Yagiura's Algorithm , 2005, ISAAC.

[20]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[21]  Christophe Paul,et al.  Fully dynamic recognition algorithm and certificate for directed cographs , 2004, Graph-Theoretic Concepts in Computer Science.

[22]  Roberto Tamassia,et al.  On-Line Planarity Testing , 1989, SIAM J. Comput..

[23]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[24]  Roded Sharan,et al.  A fully dynamic algorithm for modular decomposition and recognition of cographs , 2004, Discret. Appl. Math..

[25]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..