Effect of n and p-silicon Substrate on Dielectric Constant, Dielectric Loss Tangent of PPy-MWCNTs/TiO2/Al2O3 Structure

[1]  Abdelwahab Hassan,et al.  Dielectric and electrical performance of poly (o-toluidine) based MOS devices , 2021 .

[2]  A. Ashery,et al.  Fabrication and electrical characterization of the Al/n-Si/CZTSe4/Ag heterojunction , 2021, Physica B: Condensed Matter.

[3]  A. Gaballah,et al.  Fabrication, Electrical and Dielectric Characterization of Au/CNT/TiO2/SiO2/p-Si/Al with High Dielectric Constant, Low Loss Dielectric Tangent , 2021 .

[4]  A. Ashery,et al.  Synthesis, characterization and electrical properties of conducting nanoparticles of graphene oxide , 2021 .

[5]  A. Ashery,et al.  Novel negative capacitance, conductance at high and low frequencies in Au/Polypyrrole –MWCNT composite /TiO2/Al2O3/n-Si structure , 2021, Materials Research Express.

[6]  A. Farag,et al.  Electrical performance of nanocrystalline graphene oxide/SiO2-based hybrid heterojunction device , 2021 .

[7]  A. Ashery,et al.  Current Transport and Dielectric Analysis of Ni/SiO2/P-Si Diode Prepared by Liquid Phase Epitaxy , 2020, Silicon.

[8]  A. Azab,et al.  Negative resistance, capacitance in Mn/SiO2/p-Si MOS structure , 2020, Materials Research Express.

[9]  H. Shaban,et al.  Frequency and temperature dependence of dielectric properties and capacitance–voltage in GO/TiO2/n-Si MOS device , 2020, Applied Physics A.

[10]  A. Farag,et al.  Tailoring the electrical characterization of epitaxialCuInGaSe2 thin film-based device for photodiode appliances , 2020, Superlattices and Microstructures.

[11]  M. Kumari,et al.  Systematic investigation of structural, optical and dielectric properties of 0.5 mol% Eu:BaTiO3 ceramics , 2020 .

[12]  A. Farag,et al.  Enhancement of electrical and dielectrically performance of graphene-based promise electronic devices , 2020 .

[13]  P. M. Sarun,et al.  Studies of dielectric and electrical conductivity behavior of strontium titanate ceramic , 2018 .

[14]  Qi Li,et al.  Design, synthesis and processing of PVDF‐based dielectric polymers , 2018, IET Nanodielectrics.

[15]  A. Gaur,et al.  Behaviour of multiphase PVDF in (1−x)PVDF/(x)BaTiO3 nanocomposite films: structural, optical, dielectric and ferroelectric properties , 2018, Journal of Materials Science: Materials in Electronics.

[16]  Zhicheng Zhang,et al.  PVDF-based dielectric polymers and their applications in electronic materials , 2018 .

[17]  Nitin Kumar,et al.  Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co 0.5 Ti 0.5 )O 3 – BiFeO 3 solid solution , 2018 .

[18]  M. Hosseini,et al.  Electrochemical behavior of a Nafion‐membrane‐based solid‐state supercapacitor with a graphene oxide—multiwalled carbon nanotube—polypyrrole nanocomposite , 2017 .

[19]  S. Ducharme,et al.  Ferroelectricity and the phase transition in large area evaporated vinylidene fluoride oligomer thin films , 2017 .

[20]  A. Naberezhnov,et al.  Structure and dielectric response of (1–x)NaNO2 + xBaTiO3 composites at x = 0.05 and 0.1 , 2017 .

[21]  Shouke Yan,et al.  Crystal Structure Regulation of Ferroelectric Poly(vinylidene fluoride) via Controlled Melt–Recrystallization , 2017 .

[22]  Wei Zhao,et al.  Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites , 2017 .

[23]  Mir Ghasem Hosseini,et al.  Electrochemical and electromechanical behavior of Nafion-based soft actuators with PPy/CB/MWCNT nanocomposite electrodes , 2017 .

[24]  M. Ulaganathan,et al.  Photopolymerization of Diacetylene on Aligned Multiwall Carbon Nanotube Microfibers for High-Performance Energy Devices. , 2016, ACS applied materials & interfaces.

[25]  P. May,et al.  Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices , 2016, Journal of Electronic Materials.

[26]  F. Z. Yehia,et al.  Fe3O4-boosted MWCNT as an efficient sustainable catalyst for PET glycolysis , 2016 .

[27]  K. Asaka,et al.  High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic Liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[28]  Thea I. W. Schnoor,et al.  Nanostructured MWCNT/Polypyrrole Actuators with Anisotropic Strain Response   , 2016 .

[29]  M. Es‐Souni,et al.  Supported porous carbon and carbon–CNT nanocomposites for supercapacitor applications , 2016 .

[30]  R. K. Prasad,et al.  Carbon nanotubes dispersed polymer nanocomposites: mechanical, electrical, thermal properties and surface morphology , 2016, Bulletin of Materials Science.

[31]  K. Asaka,et al.  Electrochemical and Electromechanical Properties of Activated Multi-walled Carbon Nanotube Polymer Actuator that Surpass the Performance of a Single-walled Carbon Nanotube Polymer Actuator , 2016 .

[32]  Luzhuo Chen,et al.  A curvature-controllable, convex-mirror actuator based on carbon nanotube film composites , 2016 .

[33]  Robert Valner,et al.  Electrochemical actuation of multiwall carbon nanotube fiber with embedded carbide-derived carbon particles , 2015 .

[34]  Sanjay G. Bachhav,et al.  Study of Polypyrrole-Coated MWCNT Nanocomposites for Ammonia Sensing at Room Temperature , 2015 .

[35]  C. Echeverría,et al.  Carbon Nanotubes as Reinforcement of Cellulose Liquid Crystalline Responsive Networks. , 2015, ACS applied materials & interfaces.

[36]  L. Ceseracciu,et al.  Parylene-coated ionic liquid-carbon nanotube actuators for user-safe haptic devices. , 2015, ACS applied materials & interfaces.

[37]  Rohit Bhatia,et al.  Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes , 2015, PloS one.

[38]  F. Faupel,et al.  Light-Controlled Conductance Switching in Azobenzene-Containing MWCNT-Polymer Nanocomposites. , 2015, ACS applied materials & interfaces.

[39]  Lirong Kong,et al.  Carbon Nanotube and Graphene‐based Bioinspired Electrochemical Actuators , 2014, Advanced materials.

[40]  K. Hata,et al.  Direct wall number control of carbon nanotube forests from engineered iron catalysts. , 2013, Journal of nanoscience and nanotechnology.

[41]  M. Deepa,et al.  MoO2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode. , 2013, ACS applied materials & interfaces.

[42]  M. Hirscher,et al.  Amorphous carbon nanotubes produced by a temperature controlled DC arc discharge , 2004 .