Three new factors of Fermat numbers

We report the discovery of a new factor for each of the Fermat numbers F 13 , F 15 , F 16 These new factors have 27, 33 and 27 decimal digits respectively. Each factor was found by the elliptic curve method. After division by the new factors and previously known factors, the remaining cofactors are seen to be composite numbers with 2391, 9808 and 19694 decimal digits respectively.

[1]  F. Luca,et al.  Factors of Fermat Numbers , 2002 .

[2]  Rainer A. Rueppel Advances in Cryptology — EUROCRYPT’ 92 , 2001, Lecture Notes in Computer Science.

[3]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[4]  Richard P. Brent,et al.  Factorization of the tenth Fermat number , 1999, Math. Comput..

[5]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[6]  Richard P. Brent,et al.  Two new factors of Fermat numbers , 1997 .

[7]  Janusz Zalewski,et al.  Topics in advanced scientific computation , 1996, IEEE Parallel & Distributed Technology: Systems & Applications.

[8]  Richard P. Brent,et al.  Factorization of the tenth and eleventh Fermat numbers , 1996 .

[9]  Richard E. Crandall,et al.  The twenty-second Fermat number is composite , 1995 .

[10]  P. L. Montgomery,et al.  A survey of modern integer factorization algorithms , 1994 .

[11]  Richard E. Crandall,et al.  Projects in scientific computation , 1994 .

[12]  B. Fagin,et al.  Discrete weighted transforms and large-integer arithmetic , 1994 .

[13]  A. K. Lenstra,et al.  The factorization of the ninth Fermat number , 1993 .

[14]  Robert D. Silverman,et al.  A practical analysis of the elliptic curve factoring algorithm , 1993 .

[15]  P. L. Montgomery,et al.  An FFT extension of the elliptic curve method of factorization , 1992 .

[16]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[17]  Françoise Morain Courbes elliptiques et tests de primalité , 1990 .

[18]  Arjen K. Lenstra,et al.  Factoring by Electronic Mail , 1990, EUROCRYPT.

[19]  P. L. Montgomery Speeding the Pollard and elliptic curve methods of factorization , 1987 .

[20]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[21]  D. Chudnovsky,et al.  Sequences of numbers generated by addition in formal groups and new primality and factorization tests , 1986 .

[22]  J. L. Selfridge,et al.  Factorizations of b[n]±1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers , 1985 .

[23]  Wilfrid Keller,et al.  Factors of Fermat numbers and large primes of the form ⋅2ⁿ+1 , 1983 .

[24]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 2 , 1981 .

[25]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[26]  John Brillhart,et al.  Corrigenda to: “Two new factors of Fermat numbers” (Math. Comp. 29 (1975), 110) , 1976 .

[27]  Claude P. Wrathall New factors of Fermat numbers , 1964 .

[28]  Raphael M. Robinson Factors of Fermat numbers , 1957 .