Three new factors of Fermat numbers
暂无分享,去创建一个
Richard P. Brent | Karl Dilcher | Richard E. Crandall | C. Van Halewyn | R. Brent | R. Crandall | K. Dilcher | C. V. Halewyn
[1] F. Luca,et al. Factors of Fermat Numbers , 2002 .
[2] Rainer A. Rueppel. Advances in Cryptology — EUROCRYPT’ 92 , 2001, Lecture Notes in Computer Science.
[3] David Thomas,et al. The Art in Computer Programming , 2001 .
[4] Richard P. Brent,et al. Factorization of the tenth Fermat number , 1999, Math. Comput..
[5] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[6] Richard P. Brent,et al. Two new factors of Fermat numbers , 1997 .
[7] Janusz Zalewski,et al. Topics in advanced scientific computation , 1996, IEEE Parallel & Distributed Technology: Systems & Applications.
[8] Richard P. Brent,et al. Factorization of the tenth and eleventh Fermat numbers , 1996 .
[9] Richard E. Crandall,et al. The twenty-second Fermat number is composite , 1995 .
[10] P. L. Montgomery,et al. A survey of modern integer factorization algorithms , 1994 .
[11] Richard E. Crandall,et al. Projects in scientific computation , 1994 .
[12] B. Fagin,et al. Discrete weighted transforms and large-integer arithmetic , 1994 .
[13] A. K. Lenstra,et al. The factorization of the ninth Fermat number , 1993 .
[14] Robert D. Silverman,et al. A practical analysis of the elliptic curve factoring algorithm , 1993 .
[15] P. L. Montgomery,et al. An FFT extension of the elliptic curve method of factorization , 1992 .
[16] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[17] Françoise Morain. Courbes elliptiques et tests de primalité , 1990 .
[18] Arjen K. Lenstra,et al. Factoring by Electronic Mail , 1990, EUROCRYPT.
[19] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization , 1987 .
[20] H. W. Lenstra,et al. Factoring integers with elliptic curves , 1987 .
[21] D. Chudnovsky,et al. Sequences of numbers generated by addition in formal groups and new primality and factorization tests , 1986 .
[22] J. L. Selfridge,et al. Factorizations of b[n]±1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers , 1985 .
[23] Wilfrid Keller,et al. Factors of Fermat numbers and large primes of the form ⋅2ⁿ+1 , 1983 .
[24] Donald E. Knuth,et al. The Art of Computer Programming, Vol. 2 , 1981 .
[25] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[26] John Brillhart,et al. Corrigenda to: “Two new factors of Fermat numbers” (Math. Comp. 29 (1975), 110) , 1976 .
[27] Claude P. Wrathall. New factors of Fermat numbers , 1964 .
[28] Raphael M. Robinson. Factors of Fermat numbers , 1957 .