Optimal Representation in Average Using Kolmogorov Complexity
暂无分享,去创建一个
[1] M Dauchet,et al. Compression and genetic sequence analysis. , 1996, Biochimie.
[2] H. P. Yockey,et al. Information Theory And Molecular Biology , 1992 .
[3] Andrew V. Goldberg,et al. Compression and Ranking , 1991, SIAM J. Comput..
[4] Wojciech Rytter,et al. Text Algorithms , 1994 .
[5] Jean-Paul Delahaye,et al. Detection of significant patterns by compression algorithms: the case of approximate tandem repeats in DNA sequences , 1997, Comput. Appl. Biosci..
[6] Osamu Watanabe,et al. Kolmogorov Complexity and Computational Complexity , 2012, EATCS Monographs on Theoretical Computer Science.
[7] David A. Huffman,et al. A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.
[8] L. Goddard. Information Theory , 1962, Nature.
[9] Robert B. Ash,et al. Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[10] Claude E. Shannon,et al. The mathematical theory of communication , 1950 .
[11] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.
[12] Cristian S. Calude. Information and Randomness: An Algorithmic Perspective , 1994 .
[13] J. Delahaye. Information, complexité et hasard , 1994 .
[14] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[15] James A. Storer,et al. Data Compression: Methods and Theory , 1987 .
[16] Max Dauchet,et al. A first step toward chromosome analysis by compression algorithms , 1995, Proceedings First International Symposium on Intelligence in Neural and Biological Systems. INBS'95.
[17] Claude E. Shannon,et al. A Mathematical Theory of Communications , 1948 .