SF-LG: Space-Filling Line Graphs for Visualizing Interrelated Time-series Data on Smartwatches

Multiple embedded sensors enable smartwatch apps to amass large amounts of interrelated time-series data simultaneously, such as heart rate, oxygen levels or steps walked. Visualizing multiple interlinked datasets is possible on smartphones but remains challenging on small smartwatch displays. We propose a new technique, the Space-Filling Line Graph (SF-LG), that preserves the key visual properties of time-series graphs while making available space on the display to augment such graphs with additional information. Results from our first study (N=30) suggest that, while SF-LG makes available additional space on the small display, it also enables effective (i.e. quick and accurate) comprehension of key line graph tasks. We next implement a greedy algorithm to embed auxiliary information in the most suitable regions on the display. In a second study (N=27), we find that participants are efficient at locating and linking interrelated content using SF-LG in comparison to two baselines approaches. We conclude with guidelines for smartwatch space maximization for visual displays.

[1]  Paul Rosen,et al.  TopoLines: Topological Smoothing for Line Charts , 2019, EuroVis.

[2]  Petra Isenberg,et al.  Evaluation of alternative glyph designs for time series data in a small multiple setting , 2013, CHI.

[3]  Dan Nathan-Roberts,et al.  How Fitness Trackers Facilitate Health Behavior Change , 2016 .

[4]  Charles Perin,et al.  Interactive horizon graphs: improving the compact visualization of multiple time series , 2013, CHI.

[5]  Heidrun Schumann,et al.  Survey of Visualization Techniques , 2011 .

[6]  F. E. Croxton,et al.  Graphic Comparisons by Bars, Squares, Circles, and Cubes , 1932 .

[7]  Tak-chung Fu,et al.  Flexible time series pattern matching based on perceptually important points , 2001 .

[8]  Niklas Elmqvist,et al.  Graphical Perception of Multiple Time Series , 2010, IEEE Transactions on Visualization and Computer Graphics.

[9]  Frederick E. Croxton,et al.  Bar Charts versus Circle Diagrams , 1927 .

[10]  Ben Shneiderman,et al.  Dynamic queries for visual information seeking , 1994, IEEE Software.

[11]  Martin Wattenberg,et al.  Visualizing the stock market , 1999, CHI Extended Abstracts.

[12]  T. Saito,et al.  Two-tone pseudo coloring: compact visualization for one-dimensional data , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[13]  Eugene Wu,et al.  At a Glance: Pixel Approximate Entropy as a Measure of Line Chart Complexity , 2018, IEEE Transactions on Visualization and Computer Graphics.

[14]  Fanglin Chen,et al.  WearMail: On-the-Go Access to Information in Your Email with a Privacy-Preserving Human Computation Workflow , 2017, UIST.

[15]  James A. Landay,et al.  Conducting In Situ Evaluations for and With Ubiquitous Computing Technologies , 2007, Int. J. Hum. Comput. Interact..

[16]  Karl Johan Åström,et al.  On the choice of sampling rates in parametric identification of time series , 1969, Inf. Sci..

[17]  Jeffrey Heer,et al.  Crowdsourcing graphical perception: using mechanical turk to assess visualization design , 2010, CHI.

[18]  Xiaonan Guo,et al.  FitCoach: Virtual fitness coach empowered by wearable mobile devices , 2017, IEEE INFOCOM 2017 - IEEE Conference on Computer Communications.

[19]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[20]  Mark A. Livingston,et al.  Evaluation of Multivariate Visualization on a Multivariate Task , 2012, IEEE Transactions on Visualization and Computer Graphics.

[21]  Ben Shneiderman,et al.  Tree-maps: a space-filling approach to the visualization of hierarchical information structures , 1991, Proceeding Visualization '91.

[22]  Andrea Bunt,et al.  Data representations for in-situ exploration of health and fitness data , 2017, PervasiveHealth.

[23]  Kenneth M. Anderson,et al.  A vision for heart rate health through wearables , 2016, UbiComp Adjunct.

[24]  John T. Stasko,et al.  Effectiveness of Animation in Trend Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[25]  Silvia Miksch,et al.  Qualizon graphs: space-efficient time-series visualization with qualitative abstractions , 2014, AVI.

[26]  Wilbur Schramm,et al.  How accurately are different kinds of graphs read? , 1954 .

[27]  Ghulam Jilani Quadri,et al.  LineSmooth: An Analytical Framework for Evaluating the Effectiveness of Smoothing Techniques on Line Charts , 2020, IEEE Transactions on Visualization and Computer Graphics.

[28]  Jarke J. van Wijk,et al.  Cushion Treemaps: Visualization of Hierarchical Information , 1999, INFOVIS.

[29]  Bongshin Lee,et al.  Visualizing Information on Watch Faces: A Survey with Smartwatch Users , 2020, 2020 IEEE Visualization Conference (VIS).

[30]  Bongshin Lee,et al.  Glanceable Visualization: Studies of Data Comparison Performance on Smartwatches , 2019, IEEE Transactions on Visualization and Computer Graphics.

[31]  Daniel Vogel,et al.  Shift: a technique for operating pen-based interfaces using touch , 2007, CHI.

[32]  Tak-Chung Fu,et al.  Stock time series visualization based on data point importance , 2008, Eng. Appl. Artif. Intell..

[33]  John T. Stasko,et al.  An evaluation of space-filling information visualizations for depicting hierarchical structures , 2000, Int. J. Hum. Comput. Stud..

[34]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[35]  Eamonn J. Keogh,et al.  Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases , 2001, Knowledge and Information Systems.

[36]  Pourang Irani,et al.  G-Sparks: Glanceable Sparklines on Smartwatches , 2019, Graphics Interface.

[37]  Walter Crosby Eells,et al.  The Relative Merits of Circles and Bars for Representing Component Parts , 1926 .

[38]  Michael A. Horning,et al.  FitAware: Promoting Group Fitness Awareness ThroughGlanceable Smartwatches , 2018, GROUP.

[39]  M. Wattenberg A note on space-filling visualizations and space-filling curves , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..