Multidimensional interferometric tool for the local probe microscopy nanometrology

This work reports on the measurement at the nanoscale using local probe microscopy techniques, primarily atomic force microscopy. Recent applications using the atomic force microscope as a nanometrology tool require that not only the positioning of the tip has to be based on precise measurements but also the traceability of the measuring technique has to be ensured up to the primary standard. Thus, in our experimental work, laser interferometric measuring methods were employed. In this paper, a new design of the six-axis-dimensional interferometric measurement tool for local probe microscopy stage nanopositioning is presented.

[1]  T. Quinn,et al.  INTERNATIONAL REPORTS: Mise en Pratique of the Definition of the Metre (1992) , 1994 .

[2]  Byong Chon Park,et al.  Measurement of microscope calibration standards in nanometrology using a metrological atomic force microscope , 2006 .

[3]  M C Moolman,et al.  Calibration strategies for scanning probe metrology , 2007 .

[4]  J Haycocks,et al.  Traceable calibration of transfer standards for scanning probe microscopy , 2005 .

[5]  Antti Lassila,et al.  Design and characterization of MIKES metrological atomic force microscope , 2010 .

[6]  Albert Weckenmann,et al.  Development of a tunnelling current sensor for a long-range nano-positioning device , 2008 .

[7]  Jiro Otsuka,et al.  Development of a small ultraprecision positioning device with 5 nm resolution , 2005 .

[8]  A Lassila,et al.  Calibration of a commercial AFM: traceability for a coordinate system , 2007 .

[9]  S. Gonda,et al.  REAL-TIME, INTERFEROMETRICALLY MEASURING ATOMIC FORCE MICROSCOPE FOR DIRECT CALIBRATION OF STANDARDS , 1999 .

[10]  Josef Lazar,et al.  Absolute frequency shifts of iodine cells for laser stabilization , 2009 .

[11]  Ger Gerd A Nanopositioning and Nanomeasuring Machine: Operation-Measured Results , 2004 .

[12]  Ondřej Číp,et al.  Problems regarding linearity of data of a laser interferometer with a single-frequency laser , 1999 .

[13]  Gaoliang Dai,et al.  Accurate and traceable measurement of nano- and microstructures , 2006 .

[14]  Ondrej Cip,et al.  A scale-linearization method for precise laser interferometry , 2000 .

[15]  Wenmei Hou,et al.  Investigation and compensation of the nonlinearity of heterodyne interferometers , 1992 .

[16]  Josef Lazar,et al.  Absolute Distance Measurements with Tunable Semiconductor Laser , 2005 .

[17]  Petr Klapetek,et al.  Local probe microscopy with interferometric monitoring of the stage nanopositioning , 2009 .

[18]  Josef Lazar,et al.  Tunable extended-cavity diode laser stabilized on iodine at λ = 633 nm , 2000 .

[19]  Gaoliang Dai,et al.  Metrological large range scanning probe microscope , 2004 .

[20]  Josef Lazar,et al.  International Comparison of Eight Semiconductor Lasers Stabilized on 127I2 at 633 nm , 2000 .

[21]  Jon T. Hougen,et al.  Atlas of the I2 Spectrum from 19 000 to 18 000 cm−1 , 1977, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[22]  Mikko Merimaa,et al.  Comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers at the Bureau International des Poids et Mesures. , 2003, Applied optics.

[23]  Hong Jin Kong,et al.  A compact system for simultaneous measurement of linear and angular displacements of nano-stages. , 2007, Optics express.

[24]  Andrew Lewis,et al.  Advances in traceable nanometrology at the National Physical Laboratory , 2001 .

[25]  Ndubuisi G. Orji,et al.  Scanning probe microscope dimensional metrology at NIST , 2011 .