Evaporative cooling of antiprotons to cryogenic temperatures.

We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

[1]  J S Hangst,et al.  Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector. , 2009, The Review of scientific instruments.

[2]  J. Wurtele,et al.  Compression of antiproton clouds for antihydrogen trapping. , 2008, Physical review letters.

[3]  J. Fajans,et al.  A magnetic trap for antihydrogen confinement , 2006 .

[4]  A. Fontana,et al.  Spatial distribution of cold antihydrogen formation. , 2005, Physical review letters.

[5]  E. A. Hessels,et al.  First laser-controlled antihydrogen production. , 2004, Physical review letters.

[6]  E. A. Hessels,et al.  First measurement of the velocity of slow antihydrogen atoms. , 2004, Physical review letters.

[7]  E. A. Hessels,et al.  Background-free observation of cold antihydrogen with field-ionization analysis of its states. , 2002, Physical review letters.

[8]  A. Fontana,et al.  Production and detection of cold antihydrogen atoms , 2002, Nature.

[9]  F. Currell,et al.  Pulsed Evaporative Cooling of Ion Cloud in an Electron Beam Ion Trap , 2001 .

[10]  Greaves,et al.  Inward transport and compression of a positron plasma by a rotating electric field , 2000, Physical review letters.

[11]  J. Tuyn,et al.  The Antiproton Decelerator: AD , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).

[12]  E. M. Hollmann,et al.  STEADY-STATE CONFINEMENT OF NON-NEUTRAL PLASMAS BY ROTATING ELECTRIC FIELDS , 1997 .

[13]  N. J. Druten,et al.  Evaporative Cooling of Trapped Atoms , 1996 .

[14]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[15]  S. N. Rasband,et al.  Numerical calculation of axisymmetric non‐neutral plasma equilibria , 1993 .

[16]  Notte,et al.  Observation of the ion resonance instability. , 1993, Physical review letters.

[17]  A. Hyatt,et al.  Parallel energy analyzer for pure electron plasma devices , 1992 .

[18]  M. Rosenbluth,et al.  Collisional equipartition rate for a magnetized pure electron plasma , 1992 .

[19]  M. Charlton Antihydrogen production in collisions of antiprotons with excited states of positronium , 1990 .

[20]  Haas,et al.  Cooling and slowing of trapped antiprotons below 100 meV. , 1989, Physical review letters.

[21]  Haas,et al.  First capture of antiprotons in a Penning trap: A kiloelectronvolt source. , 1986, Physical review letters.

[22]  Hess,et al.  Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. , 1986, Physical review. B, Condensed matter.

[23]  T. M. O'Neil A confinement theorem for nonneutral plasmas , 1980 .