Functional, Anatomical, and Molecular Investigation of the Cardiac Conduction System and Arrhythmogenic Atrioventricular Ring Tissue in the Rat Heart

Background The cardiac conduction system consists of the sinus node, nodal extensions, atrioventricular (AV) node, penetrating bundle, bundle branches, and Purkinje fibers. Node‐like AV ring tissue also exists at the AV junctions, and the right and left rings unite at the retroaortic node. The study aims were to (1) construct a 3‐dimensional anatomical model of the AV rings and retroaortic node, (2) map electrical activation in the right ring and study its action potential characteristics, and (3) examine gene expression in the right ring and retroaortic node. Methods and Results Three‐dimensional reconstruction (based on magnetic resonance imaging, histology, and immunohistochemistry) showed the extent and organization of the specialized tissues (eg, how the AV rings form the right and left nodal extensions into the AV node). Multiextracellular electrode array and microelectrode mapping of isolated right ring preparations revealed robust spontaneous activity with characteristic diastolic depolarization. Using laser microdissection gene expression measured at the mRNA level (using quantitative PCR) and protein level (using immunohistochemistry and Western blotting) showed that the right ring and retroaortic node, like the sinus node and AV node but, unlike ventricular muscle, had statistically significant higher expression of key transcription factors (including Tbx3, Msx2, and Id2) and ion channels (including HCN4, Cav3.1, Cav3.2, Kv1.5, SK1, Kir3.1, and Kir3.4) and lower expression of other key ion channels (Nav1.5 and Kir2.1). Conclusions The AV rings and retroaortic node possess gene expression profiles similar to that of the AV node. Ion channel expression and electrophysiological recordings show the AV rings could act as ectopic pacemakers and a source of atrial tachycardia.

[1]  A. Brewer,et al.  GATA factors in vertebrate heart development and disease , 2006, Expert Reviews in Molecular Medicine.

[2]  B. Hoffman,et al.  Electrophysiological evidence for specialized fiber types in rabbit atrium. , 1959, The American journal of physiology.

[3]  M. Spach,et al.  The nature of electrical propagation in cardiac muscle. , 1983, The American journal of physiology.

[4]  J M de Bakker,et al.  Origin and significance of double potentials near the atrioventricular node. Correlation of extracellular potentials, intracellular potentials, and histology. , 1994, Circulation.

[5]  Stanley Nattel,et al.  Differential Distribution of Cardiac Ion Channel Expression as a Basis for Regional Specialization in Electrical Function , 2002, Circulation research.

[6]  Paul A. Iaizzo,et al.  Handbook of Cardiac Anatomy, Physiology, and Devices , 2005, Springer International Publishing.

[7]  A. Moorman,et al.  Protein interactions at the heart of cardiac chamber formation. , 2009, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[8]  Fons J. Verbeek,et al.  New Findings Concerning Ventricular Septation in the Human Heart: Implications for Maldevelopment , 1992, Circulation.

[9]  Halina Dobrzynski,et al.  The anatomy of the cardiac conduction system , 2009, Clinical anatomy.

[10]  R. Anderson,et al.  The disposition and innervation of atrioventricular ring specialized tissue in rats and rabbits. , 1972, Journal of anatomy.

[11]  A. Moorman,et al.  The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. , 2004, Cardiovascular research.

[12]  Edward G Lakatta,et al.  A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. , 2010, Circulation research.

[13]  T. N. James,et al.  THE CONNECTING PATHWAYS BETWEEN THE SINUS NODE AND A-V NODE AND BETWEEN THE RIGHT AND THE LEFT ATRIUM IN THE HUMAN HEART. , 1963, American heart journal.

[14]  M. DeRuiter,et al.  Development of the cardiac conduction tissue in human embryos using HNK-1 antigen expression: possible relevance for understanding of abnormal atrial automaticity. , 1999, Circulation.

[15]  Richard P. Harvey,et al.  Molecular Pathway for the Localized Formation of the Sinoatrial Node , 2007, Circulation research.

[16]  Robert H. Anderson,et al.  Developmental Origin, Growth, and Three-Dimensional Architecture of the Atrioventricular Conduction Axis of the Mouse Heart , 2010, Circulation research.

[17]  Anderson Rh,et al.  The disposition and innervation of atrioventricular ring specialized tissue in rats and rabbits. , 1972 .

[18]  A. Moorman,et al.  Atrioventricular junctional tissue. Discrepancy between histological and electrophysiological characteristics. , 1996, Circulation.

[19]  Robert H. Anderson,et al.  Molecular Analysis of Patterning of Conduction Tissues in the Developing Human Heart , 2011, Circulation. Arrhythmia and electrophysiology.

[20]  Robert H. Anderson The conduction tissues in congenitally corrected transposition. , 2004, The Annals of thoracic surgery.

[21]  A. Moorman,et al.  Expression of Muscle Segment Homeobox Genes in the Developing Myocardium , 2010, Anatomical record.

[22]  J. Nerbonne,et al.  Molecular correlates of the calcium‐independent, depolarization‐activated K+ currents in rat atrial myocytes , 1999, The Journal of physiology.

[23]  A. Noma,et al.  Resting K conductances in pacemaker and non-pacemaker heart cells of the rabbit. , 1984, The Japanese journal of physiology.

[24]  S. I. Park,et al.  Induction of Id2 expression by cardiac transcription factors GATA4 and Nkx2.5 , 2008, Journal of cellular biochemistry.

[25]  S. Pikkarainen,et al.  GATA transcription factors in the developing and adult heart. , 2004, Cardiovascular research.

[26]  Robert H. Anderson Das reizleitungssystem des säugetierherzens: S. Tawara Gustav Fischer, Jena, 1906; 193 pp.; , 1988 .

[27]  Paul A. Iaizzo,et al.  Handbook of Cardiac Anatomy, Physiology, and Devices: Second Edition , 2005 .

[28]  Mitsuru Yamamoto,et al.  Extended atrial conduction system characterised by the expression of the HCN4 channel and connexin45. , 2006, Cardiovascular research.

[29]  P. Sanders,et al.  Focal atrial tachycardia arising from the tricuspid annulus: electrophysiologic and electrocardiographic characteristics. , 2000, Journal of cardiovascular electrophysiology.

[30]  D DiFrancesco,et al.  Muscarinic modulation of cardiac rate at low acetylcholine concentrations. , 1989, Science.

[31]  Thomas Jespersen,et al.  Inhibition of Small-Conductance Ca2+-Activated K+ Channels Terminates and Protects Against Atrial Fibrillation , 2010, Circulation. Arrhythmia and electrophysiology.

[32]  A. Becker,et al.  The Conducting Tissues in Congenitally Corrected Transposition , 1974, Circulation.

[33]  S. Ho,et al.  The Architecture of the Sinus Node, the Atrioventricular Conduction Axis, and the Internodal Atrial Myocardium , 1998, Journal of cardiovascular electrophysiology.

[34]  J. Adelman,et al.  Functional Roles of a Ca2+-Activated K+ Channel in Atrioventricular Nodes , 2008, Circulation research.

[35]  Robert H. Anderson,et al.  Anatomic substrates for cardiac conduction. , 2005, Heart rhythm.

[36]  J Jalife,et al.  Visualization and functional characterization of the developing murine cardiac conduction system. , 2001, Development.

[37]  Robert H. Anderson,et al.  Computer Three‐Dimensional Anatomical Reconstruction of the Human Sinus Node and a Novel Paranodal Area , 2011, Anatomical record.

[38]  H Honjo,et al.  Computer Three-Dimensional Reconstruction of the Sinoatrial Node , 2005, Circulation.

[39]  Yi Zhang,et al.  Molecular Identification and Functional Roles of a Ca2+-activated K+ Channel in Human and Mouse Hearts* , 2003, Journal of Biological Chemistry.

[40]  J. Jalife,et al.  Automaticity in atrioventricular valve leaflets of rabbit heart. , 1986, The American journal of physiology.

[41]  G. Muscat,et al.  β-Adrenergic signaling regulates NR4A nuclear receptor and metabolic gene expression in multiple tissues , 2009, Molecular and Cellular Endocrinology.

[42]  Hengjun Chao,et al.  RNA repair for haemophilia A , 2006, Expert Reviews in Molecular Medicine.

[43]  N. Severs,et al.  Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. , 1999, Developmental genetics.

[44]  Henggui Zhang,et al.  Computer Three-Dimensional Reconstruction of the Atrioventricular Node , 2008, Circulation research.

[45]  Robert H. Anderson,et al.  The extent of the specialized atrioventricular ring tissues. , 2009, Heart rhythm.

[46]  Robert H. Anderson,et al.  New insights into pacemaker activity: promoting understanding of sick sinus syndrome. , 2007, Circulation.

[47]  Jörg Striessnig,et al.  Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Shendure,et al.  A Molecular Pathway Including Id2, Tbx5, and Nkx2-5 Required for Cardiac Conduction System Development , 2007, Cell.

[49]  R. Anderson,et al.  Development of atrioventricular specialized tissue in human heart. , 1972, British heart journal.

[50]  田淵 淳,et al.  Das Reizleitungssystem des Säugetierherzens : eine anatomisch-histologische Studie über das Atrioventrikularbündel und die Purkinjeschen Fäden , 1906 .

[51]  C. Basson,et al.  Specification of the Cardiac Conduction System by Transcription Factors , 2009, Circulation research.

[52]  J. Kalman,et al.  P-wave morphology in focal atrial tachycardia: development of an algorithm to predict the anatomic site of origin. , 2006, Journal of the American College of Cardiology.