Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges

With the influx of complex and detailed tracking data gathered from electronic tracking devices, the analysis of animal movement data has recently emerged as a cottage industry among biostatisticians. New approaches of ever greater complexity are continue to be added to the literature. In this paper, we review what we believe to be some of the most popular and most useful classes of statistical models used to analyse individual animal movement data. Specifically, we consider discrete-time hidden Markov models, more general state-space models and diffusion processes. We argue that these models should be core components in the toolbox for quantitative researchers working on stochastic modelling of individual animal movement. The paper concludes by offering some general observations on the direction of statistical analysis of animal movement. There is a trend in movement ecology towards what are arguably overly complex modelling approaches which are inaccessible to ecologists, unwieldy with large data sets or not based on mainstream statistical practice. Additionally, some analysis methods developed within the ecological community ignore fundamental properties of movement data, potentially leading to misleading conclusions about animal movement. Corresponding approaches, e.g. based on Lévy walk-type models, continue to be popular despite having been largely discredited. We contend that there is a need for an appropriate balance between the extremes of either being overly complex or being overly simplistic, whereby the discipline relies on models of intermediate complexity that are usable by general ecologists, but grounded in well-developed statistical practice and efficient to fit to large data sets.

[1]  Vardis Tsontos,et al.  Using movement data from electronic tags in fisheries stock assessment: A review of models, technology and experimental design , 2015 .

[2]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[3]  J. Fryxell,et al.  Are there general mechanisms of animal home range behaviour? A review and prospects for future research. , 2008, Ecology letters.

[4]  Roland Langrock,et al.  Modelling group dynamic animal movement , 2013, 1308.5850.

[5]  R. Mazo On the theory of brownian motion , 1973 .

[6]  Keith Harris,et al.  Flexible continuous-time modelling for heterogeneous animal movement , 2013 .

[7]  Anders Nielsen,et al.  State–space model for light-based tracking of marine animals , 2007 .

[8]  Alastair Franke,et al.  Analysis of movements and behavior of caribou (Rangifer tarandus) using hidden Markov models , 2004 .

[9]  A. Munk,et al.  Hidden Markov models for circular and linear-circular time series , 2006, Environmental and Ecological Statistics.

[10]  Kathleen M. O’Reilly,et al.  Extending the Functionality of Behavioural Change-Point Analysis with k-Means Clustering: A Case Study with the Little Penguin (Eudyptula minor) , 2015, PloS one.

[11]  I. Macdonald,et al.  Numerical Maximisation of Likelihood: A Neglected Alternative to EM? , 2014 .

[12]  Matthew E. Watts,et al.  Integrating research using animal‐borne telemetry with the needs of conservation management , 2017 .

[13]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[14]  D. Brillinger,et al.  Elephant-seal movements : Modelling migration * , 1998 .

[15]  Carey E. Kuhn,et al.  Advances in the tracking of marine species: using GPS locations to evaluate satellite track data and a continuous-time movement model , 2009 .

[16]  Roland Langrock,et al.  Analysis of animal accelerometer data using hidden Markov models , 2016, 1602.06466.

[17]  Stephen M. Krone,et al.  Analyzing animal movements using Brownian bridges. , 2007, Ecology.

[18]  O. Ovaskainen,et al.  State-space models of individual animal movement. , 2008, Trends in ecology & evolution.

[19]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[20]  Michael Dowd,et al.  Estimating behavioral parameters in animal movement models using a state-augmented particle filter. , 2011, Ecology.

[21]  R. Jennrich,et al.  Measurement of non-circular home range. , 1969, Journal of theoretical biology.

[22]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[23]  Roland Langrock,et al.  Nonparametric inference in hidden Markov models using P‐splines , 2013, Biometrics.

[24]  Scott A. McKinley,et al.  Hidden semi-Markov models reveal multiphasic movement of the endangered Florida panther. , 2015, The Journal of animal ecology.

[25]  A. M. Edwards,et al.  Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals. , 2011, Ecology.

[26]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[27]  Edward A. Codling Individual-based movement behaviour in a simple marine reserve—fishery system: why predictive models should be handled with care , 2008, Hydrobiologia.

[28]  Iain L. MacDonald,et al.  Hidden Markov Models for Time Series: An Introduction Using R, Second Edition , 2016 .

[29]  James N. Ianelli,et al.  Computers in Fisheries Population Dynamics , 2009 .

[30]  Brett T McClintock,et al.  When to be discrete: the importance of time formulation in understanding animal movement , 2014, Movement Ecology.

[31]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[32]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[33]  Martin Wæver Pedersen,et al.  State-space models for bio-loggers: A methodological road map , 2013 .

[34]  Anders Nielsen,et al.  Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder. , 2015, Ecology.

[35]  Christian Rutz,et al.  New frontiers in biologging science , 2009, Biology Letters.

[36]  M. Musyl,et al.  Performance of pop-up satellite archival tags , 2011 .

[37]  Christopher H Jackson,et al.  Hidden Markov models for the onset and progression of bronchiolitis obliterans syndrome in lung transplant recipients , 2002, Statistics in medicine.

[38]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[39]  Alan A. Ager,et al.  Analyzing animal movement patterns using potential functions , 2013 .

[40]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[41]  Roland Langrock,et al.  Sex-specific and individual preferences for hunting strategies in white sharks , 2016 .

[42]  John Sibert,et al.  AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models , 2012, Optim. Methods Softw..

[43]  C. Holbrook,et al.  Tracking animals in freshwater with electronic tags: past, present and future , 2013, Animal Biotelemetry.

[44]  T. Patterson,et al.  Deep Sea Research Part II: Topical Studies in Oceanography , 2013 .

[45]  Mark N. Maunder,et al.  Comparison of Fixed Effect, Random Effect, and Hierarchical Bayes Estimators for Mark Recapture Data Using AD Model Builder , 2009 .

[46]  D. E. Pagendam,et al.  Optimal GPS tracking for estimating species movements , 2011 .

[47]  Remy Lopez,et al.  Improving Argos Doppler Location Using Multiple-Model Kalman Filtering , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Paul G. Blackwell,et al.  Exact Bayesian inference for animal movement in continuous time , 2016 .

[49]  W. Zucchini,et al.  Hidden Markov Models for Time Series: An Introduction Using R , 2009 .

[50]  Brandon L Southall,et al.  A multivariate mixed hidden Markov model to analyze blue whale diving behaviour during controlled sound exposures , 2016, 1602.06570.

[51]  Andrew K. Skidmore,et al.  Change detection in animal movement using discrete wavelet analysis , 2014, Ecol. Informatics.

[52]  Alison Parton,et al.  Bayesian inference for continuous time animal movement based on steps and turns , 2016 .

[53]  EvesonJ. Paige,et al.  Using electronic tag data to improve mortality and movement estimates in a tag-based spatial fisheries assessment model , 2012 .

[54]  Anders Nielsen,et al.  Improving light-based geolocation by including sea surface temperature , 2006 .

[55]  G. Pyke Understanding movements of organisms: it's time to abandon the Lévy foraging hypothesis , 2015 .

[56]  David R. Brillinger,et al.  Employing stochastic differential equations to model wildlife motion , 2002 .

[57]  Alison Parton,et al.  Bayesian inference for continuous time animal movement based on steps and turns , 2016 .

[58]  Abdolvahab Khademi Hidden Markov Models for Time Series: An Introduction Using R (2nd Edition) , 2017 .

[59]  Richard J. Meinhold,et al.  Robustification of Kalman Filter Models , 1989 .

[60]  Henrik Madsen,et al.  Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching , 2008 .

[61]  Eric Moulines,et al.  Inference in Hidden Markov Models (Springer Series in Statistics) , 2005 .

[62]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[63]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[64]  Christopher C Wilmers,et al.  The golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology. , 2015, Ecology.

[65]  Anna Skarin,et al.  Modeling interdependent animal movement in continuous time , 2016, Biometrics.

[66]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[67]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[68]  Len Thomas,et al.  Tracking marine mammals in 3D using electronic tag data , 2015 .

[69]  Mevin B. Hooten,et al.  Dynamic social networks based on movement , 2015, 1512.07607.

[70]  Brett T. McClintock,et al.  A general discrete‐time modeling framework for animal movement using multistate random walks , 2012 .

[71]  Henrik Madsen,et al.  Geolocating Fish Using Hidden Markov Models and Data Storage Tags , 2009 .

[72]  T. W. Anderson,et al.  The continuous and discrete Brownian bridges: Representations and applications , 1997 .

[73]  S. J. Koopman Discussion of `Particle Markov chain Monte Carlo methods – C. Andrieu, A. Doucet and R. Holenstein’ [Review of: Particle Markov chain Monte Carlo methods] , 2010 .

[74]  Richard W. Brill,et al.  Horizontal movements of bigeye tuna (Thunnus obesus) near Hawaii determined by Kalman filter analysis of archival tagging data , 2003 .

[75]  Paul Fearnhead,et al.  MCMC for State–Space Models , 2011 .

[76]  Roland Langrock,et al.  moveHMM: an R package for the statistical modelling of animal movement data using hidden Markov models , 2016 .

[77]  L. M. Berliner,et al.  A Bayesian tutorial for data assimilation , 2007 .

[78]  Ian D Jonsen,et al.  Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles. , 2006, The Journal of animal ecology.

[79]  L. M. Marsh,et al.  The form and consequences of random walk movement models , 1988 .

[80]  Toby A. Patterson,et al.  Designing satellite tagging studies: estimating and optimizing data recovery , 2011 .

[81]  Patrick J Butler,et al.  Biotelemetry: a mechanistic approach to ecology. , 2004, Trends in ecology & evolution.

[82]  Henrik Madsen,et al.  Estimating animal behavior and residency from movement data , 2011 .

[83]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[84]  F. Weissing,et al.  Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity , 2011, Science.

[85]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[86]  James C. Russell,et al.  Dynamic Models of Animal Movement with Spatial Point Process Interactions , 2015, 1503.08692.

[87]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[88]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[89]  Paul G. Blackwell,et al.  Bayesian inference for Markov processes with diffusion and discrete components , 2003 .

[90]  Eliezer Gurarie,et al.  Characteristic Spatial and Temporal Scales Unify Models of Animal Movement , 2011, The American Naturalist.

[91]  A. M. Edwards,et al.  Incorrect Likelihood Methods Were Used to Infer Scaling Laws of Marine Predator Search Behaviour , 2012, PloS one.

[92]  Paul G. Blackwell,et al.  Random diffusion models for animal movement , 1997 .

[93]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[94]  Patrick W. Robinson,et al.  Electronic tracking tag programming is critical to data collection for behavioral time‐series analysis , 2011 .

[95]  Roland Langrock,et al.  Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird , 2015 .

[96]  B. Madon,et al.  Deciphering behavioral changes in animal movement with a “multiple change point algorithm- classification tree” framework , 2014, Front. Ecol. Evol..

[97]  Arnaud Doucet,et al.  On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.

[98]  Toby A Patterson,et al.  Classifying movement behaviour in relation to environmental conditions using hidden Markov models. , 2009, The Journal of animal ecology.

[99]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[100]  Roland Langrock,et al.  Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. , 2012, Ecology.

[101]  Henrik Madsen,et al.  Estimation methods for nonlinear state-space models in ecology , 2011 .

[102]  M. Hindell,et al.  Using GPS data to evaluate the accuracy of state-space methods for correction of Argos satellite telemetry error. , 2010, Ecology.

[103]  Juan M. Morales,et al.  EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS , 2004 .

[104]  O. R. Bidder,et al.  A risky business or a safe BET? A Fuzzy Set Event Tree for estimating hazard in biotelemetry studies , 2014, Animal Behaviour.

[105]  James E. Dunn,et al.  Analysis of Radio Telemetry Data in Studies of Home Range , 1977 .

[106]  H. Preisler,et al.  Modeling animal movements using stochastic differential equations , 2004 .

[107]  Devin S Johnson,et al.  Continuous-time correlated random walk model for animal telemetry data. , 2008, Ecology.

[108]  Anders Nielsen,et al.  Using the particle filter to geolocate Atlantic cod ( Gadus morhua ) in the Baltic Sea, with special emphasis on determining uncertainty , 2007 .