Adaptive quasiconformal kernel discriminant analysis

Kernel discriminant analysis (KDA) is effective to extract nonlinear discriminative features of input samples using the kernel trick. However, the conventional KDA algorithm endures the kernel selection which has significant impact on the performances of KDA. In order to overcome this limitation, a novel nonlinear feature extraction method called adaptive quasiconformal kernel discriminant analysis (AQKDA) is proposed in this paper. AQKDA maps the data from the original input space to the high dimensional kernel space using a quasiconformal kernel. The adaptive parameters of the quasiconformal kernel are automatically calculated through optimizing an objective function designed for measuring the class separability of data in the feature space. Consequently, the nonlinear features extracted by AQKDA have the larger class separability compared with KDA. Experimental results on the two real-world datasets demonstrate the effectiveness of the proposed method.

[1]  Gavin C. Cawley,et al.  Optimally regularised kernel Fisher discriminant classification , 2007, Neural Networks.

[2]  Si Wu,et al.  Improving support vector machine classifiers by modifying kernel functions , 1999, Neural Networks.

[3]  Z. Liang,et al.  Efficient algorithm for kernel discriminant analysis , 2004 .

[4]  LinLin Shen,et al.  Gabor wavelets and General Discriminant Analysis for face identification and verification , 2007, Image Vis. Comput..

[5]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[6]  Hong Chang,et al.  Learning the kernel matrix by maximizing a KFD-based class separability criterion , 2007, Pattern Recognit..

[7]  Tao Jiang,et al.  Efficient and robust feature extraction by maximum margin criterion , 2003, IEEE Transactions on Neural Networks.

[8]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[9]  David Zhang,et al.  A fast kernel-based nonlinear discriminant analysis for multi-class problems , 2006, Pattern Recognit..

[10]  Jian Yang,et al.  A reformative kernel Fisher discriminant algorithm and its application to face recognition , 2006, Neurocomputing.

[11]  Bernhard Schölkopf,et al.  A Direct Method for Building Sparse Kernel Learning Algorithms , 2006, J. Mach. Learn. Res..

[12]  Xuelong Li,et al.  Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Xuelong Li,et al.  Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm , 2006, IEEE Transactions on Multimedia.

[14]  Hau-San Wong,et al.  Kernel clustering-based discriminant analysis , 2007, Pattern Recognit..

[15]  Jing Peng,et al.  Adaptive quasiconformal kernel nearest neighbor classification , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Jeng-Shyang Pan,et al.  ADAPTIVE DATA-DEPENDENT MATRIX NORM BASED GAUSSIAN KERNEL FOR FACIAL FEATURE EXTRACTION , 2007 .

[17]  Wenming Zheng,et al.  Weighted maximum margin discriminant analysis with kernels , 2005, Neurocomputing.

[18]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[19]  M. Omair Ahmad,et al.  Optimizing the kernel in the empirical feature space , 2005, IEEE Transactions on Neural Networks.

[20]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[21]  Hichem Sahbi,et al.  Kernel PCA for similarity invariant shape recognition , 2007, Neurocomputing.

[22]  Pengfei Shi,et al.  Uncorrelated discriminant vectors using a kernel method , 2005, Pattern Recognit..

[23]  Pengfei Shi,et al.  An efficient and effective method to solve kernel Fisher discriminant analysis , 2004, Neurocomputing.

[24]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[25]  Jing-Yu Yang,et al.  A novel method for Fisher discriminant analysis , 2004, Pattern Recognit..

[26]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Hanqing Lu,et al.  Improving kernel Fisher discriminant analysis for face recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[28]  Jian Huang,et al.  Kernel machine-based one-parameter regularized Fisher discriminant method for face recognition , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[29]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[30]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[31]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[32]  Lei Wang,et al.  A criterion for optimizing kernel parameters in KBDA for image retrieval , 2005, IEEE Trans. Syst. Man Cybern. Part B.

[33]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[34]  Xiao-Hong Wu,et al.  Fuzzy discriminant analysis with kernel methods , 2006, Pattern Recognit..

[35]  Jian-Huang Lai,et al.  Kernel subspace LDA with optimized kernel parameters on face recognition , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[36]  Weiguo Gong,et al.  Uncorrelated linear discriminant analysis based on weighted pairwise Fisher criterion , 2007, Pattern Recognit..

[37]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.