Exploring the membrane proteome--challenges and analytical strategies.

The analysis of proteins in biological membranes forms a major challenge in proteomics. Despite continuous improvements and the development of more sensitive analytical methods, the analysis of membrane proteins has always been hampered by their hydrophobic properties and relatively low abundance. In this review, we describe recent successful strategies that have led to in-depth analyses of the membrane proteome. To facilitate membrane proteome analysis, it is essential that biochemical enrichment procedures are combined with special analytical workflows that are all optimized to cope with hydrophobic polypeptides. These include techniques for protein solubilization, and also well-matched developments in protein separation and protein digestion procedures. Finally, we discuss approaches to target membrane-protein complexes and lipid-protein interactions, as such approaches offer unique insights into function and architecture of cellular membranes.

[1]  E. Friauf,et al.  Proteomic Analysis of Brain Plasma Membranes Isolated by Affinity Two-phase Partitioning*S , 2006, Molecular & Cellular Proteomics.

[2]  Elena Bisetto,et al.  Mammalian ATPsynthase monomer versus dimer profiled by blue native PAGE and activity stain , 2007, Electrophoresis.

[3]  R. Zahedi,et al.  Two‐dimensional benzyldimethyl‐n‐hexadecylammonium chloride/SDS‐PAGE for membrane proteomics , 2005, Proteomics.

[4]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[5]  M. Slijper,et al.  Probing the membrane interface-interacting proteome using photoactivatable lipid cross-linkers. , 2007, Journal of proteome research.

[6]  M. Salton The Bacterial Membrane , 1971 .

[7]  M. Mann,et al.  Detergent-based but gel-free method allows identification of several hundred membrane proteins in single LC-MS runs. , 2008, Journal of proteome research.

[8]  H. Schägger,et al.  Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. , 1991, Analytical biochemistry.

[9]  Fredrik Elinder,et al.  Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels , 2008, Cell Biochemistry and Biophysics.

[10]  T. Kislinger,et al.  Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells. , 2009, Journal of proteome research.

[11]  C. Huber,et al.  Liquid-chromatography-mass spectrometry of thylakoid membrane proteins. , 2009, Methods in molecular biology.

[12]  T. Rabilloud Solubilization of proteins in 2DE: an outline. , 2009, Methods in molecular biology.

[13]  Oliver Mirus,et al.  Hiding behind Hydrophobicity , 2004, Journal of Biological Chemistry.

[14]  H. Bönisch,et al.  Separation of membrane proteins by two‐dimensional electrophoresis using cationic rehydrated strips , 2008, Electrophoresis.

[15]  Ilka Wittig,et al.  Advantages and limitations of clear‐native PAGE , 2005, Proteomics.

[16]  Albert Sickmann,et al.  Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. , 2005, Molecular biology of the cell.

[17]  J. Yates,et al.  A method for the comprehensive proteomic analysis of membrane proteins , 2003, Nature Biotechnology.

[18]  M. Gerstein,et al.  Global Analysis of Protein Activities Using Proteome Chips , 2001, Science.

[19]  D. Rouquié,et al.  New zwitterionic detergents improve the analysis of membrane proteins by two‐dimensional electrophoresis , 1998, Electrophoresis.

[20]  Charles R Sanders,et al.  French Swimwear for Membrane Proteins , 2004, Chembiochem : a European journal of chemical biology.

[21]  C. Mummery,et al.  Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. , 2008, Journal of proteome research.

[22]  M. Aguilar HPLC of Peptides and Proteins , 2003 .

[23]  Albert J R Heck,et al.  Quantitative erythrocyte membrane proteome analysis with Blue-native/SDS PAGE. , 2010, Journal of proteomics.

[24]  A. Schierhorn,et al.  Agarose isoelectric focusing can improve resolution of membrane proteins in the two‐dimensional electrophoresis of bacterial proteins , 2006, Electrophoresis.

[25]  L. Eltis,et al.  Improved identification of membrane proteins by MALDI-TOF MS/MS using vacuum sublimated matrix spots on an ultraphobic chip surface. , 2008, Journal of biomolecular techniques : JBT.

[26]  Jakob Bunkenborg,et al.  Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. , 2006, Journal of proteome research.

[27]  Christine C. Wu,et al.  MudPIT analysis: application to human heart tissue. , 2009, Methods in molecular biology.

[28]  L. Zolla,et al.  Coupling of native liquid phase isoelectrofocusing and blue native polyacrylamide gel electrophoresis: a potent tool for native membrane multiprotein complex separation. , 2008, Journal of proteome research.

[29]  E. Friauf,et al.  Aqueous polymer two-phase systems for the proteomic analysis of plasma membranes from minute brain samples. , 2008, Journal of proteome research.

[30]  M. Slijper,et al.  Photocrosslinking and click chemistry enable the specific detection of proteins interacting with phospholipids at the membrane interface. , 2009, Chemistry & biology.

[31]  H. Schägger,et al.  Features and applications of blue‐native and clear‐native electrophoresis , 2008, Proteomics.

[32]  B. Scheibe,et al.  Blue native DIGE as a tool for comparative analyses of protein complexes. , 2009, Journal of proteomics.

[33]  T. Ogawa,et al.  Expression and Functional Roles of the Two Distinct NDH-1 Complexes and the Carbon Acquisition Complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp PCC 6803 , 2004, The Plant Cell Online.

[34]  K. Ishibashi,et al.  Aquaporin water channels in mammals , 1997, Clinical and Experimental Nephrology.

[35]  Jürgen Schäfer,et al.  Characterization of low abundant membrane proteins using the protein sequence tag technology. , 2004, Journal of proteome research.

[36]  J. Whitelegge,et al.  Full Subunit Coverage Liquid Chromatography Electrospray Ionization Mass Spectrometry (LCMS+) of an Oligomeric Membrane Protein , 2002, Molecular & Cellular Proteomics.

[37]  P. Cramer,et al.  Multiplexed proteomics mapping of yeast RNA polymerase II and III allows near-complete sequence coverage and reveals several novel phosphorylation sites. , 2008, Analytical chemistry.

[38]  M. Aguilar HPLC of peptides and proteins: basic theory and methodology. , 2004, Methods in molecular biology.

[39]  Ruedi Aebersold,et al.  Isolation of N-linked glycopeptides from plasma. , 2007, Analytical chemistry.

[40]  Christine C. Wu,et al.  Proteomics of Integral Membrane Proteins — Theory and Application , 2007 .

[41]  Shizuo Akira,et al.  Toll‐like Receptor and RIG‐1‐like Receptor Signaling , 2008, Annals of the New York Academy of Sciences.

[42]  J. Castle Purification of Organelles from Mammalian Cells , 1995, Current protocols in protein science.

[43]  H. Schägger,et al.  Two‐dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification , 2004, Proteomics.

[44]  C. McMaster,et al.  Identification of novel phospholipid binding proteins in Saccharomyces cerevisiae , 2006, FEBS letters.

[45]  Albert Sickmann,et al.  The proteome of Saccharomyces cerevisiae mitochondria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Rabilloud Membrane proteins ride shotgun , 2003, Nature Biotechnology.

[47]  A Bairoch,et al.  Multiple parameter cross‐species protein identification using MultiIdent ‐ a world‐wide web accessible tool , 1998, Electrophoresis.

[48]  Thomas P Conrads,et al.  A detergent‐ and cyanogen bromide‐free method for integral membrane proteomics: Application to Halobacterium purple membranes and the human epidermal membrane proteome , 2004, Proteomics.

[49]  J. Yates,et al.  Organellar proteomics reveals Golgi arginine dimethylation. , 2004, Molecular biology of the cell.

[50]  D. Dillon,et al.  2D LC/MS analysis of membrane proteins from breast cancer cell lines MCF7 and BT474. , 2004, Journal of proteome research.

[51]  An in‐gel digestion procedure that facilitates the identification of highly hydrophobic proteins by electrospray ionization‐mass spectrometry analysis , 2005, Proteomics.

[52]  M. Molloy,et al.  Membrane proteins and proteomics: Un amour impossible? , 2000, Electrophoresis.

[53]  N. D'Ambrosi,et al.  Membrane compartments and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters , 2009, The FEBS journal.

[54]  Allan Stensballe,et al.  Proteomic Analysis of Glycosylphosphatidylinositol-anchored Membrane Proteins* , 2003, Molecular & Cellular Proteomics.

[55]  Anthony G Lee,et al.  How lipids affect the activities of integral membrane proteins. , 2004, Biochimica et biophysica acta.

[56]  A. Reichert,et al.  Differential Analysis of Saccharomyces cerevisiae Mitochondria by Free Flow Electrophoresis*S , 2006, Molecular & Cellular Proteomics.

[57]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[58]  M. D'Angelo,et al.  Structure, dynamics and function of nuclear pore complexes. , 2008, Trends in cell biology.

[59]  F. Halgand,et al.  Top-down mass spectrometry of integral membrane proteins , 2006, Expert review of proteomics.

[60]  D. Wolters,et al.  Bacterial membrane proteomics , 2008, Proteomics.

[61]  B. Sitek,et al.  2‐D differential membrane proteome analysis of scarce protein samples , 2006, Proteomics.

[62]  J. Lee,et al.  Toward the bilayer proteome, electrospray ionization-mass spectrometry of large, intact transmembrane proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  B. Miroux,et al.  High sensitivity identification of membrane proteins by MALDI TOF-MASS spectrometry using polystyrene beads. , 2007, Journal of proteome research.

[64]  H. Schägger,et al.  Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. , 1994, Analytical biochemistry.

[65]  Ten-Yang Yen,et al.  Combining Results from Lectin Affinity Chromatography and Glycocapture Approaches Substantially Improves the Coverage of the Glycoproteome*S , 2009, Molecular & Cellular Proteomics.

[66]  H. Braun,et al.  Two-dimensional blue native/blue native polyacrylamide gel electrophoresis for the characterization of mitochondrial protein complexes and supercomplexes. , 2007, Methods in molecular biology.

[67]  Elena Wiederhold,et al.  The Yeast Vacuolar Membrane Proteome*S , 2009, Molecular & Cellular Proteomics.

[68]  N. Ktistakis,et al.  Differential Binding of Traffic-related Proteins to Phosphatidic Acid- or Phosphatidylinositol (4,5)- Bisphosphate-coupled Affinity Reagents* , 2001, The Journal of Biological Chemistry.

[69]  J. Pronk,et al.  A three‐way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions , 2009, Proteomics.

[70]  E. Wright,et al.  Proteomics on full-length membrane proteins using mass spectrometry. , 2000, Biochemistry.

[71]  Yinsheng Wang,et al.  Quantitative analysis of surface plasma membrane proteins of primary and metastatic melanoma cells. , 2008, Journal of proteome research.

[72]  K. Pfeiffer,et al.  Supercomplexes in the respiratory chains of yeast and mammalian mitochondria , 2000, The EMBO journal.

[73]  Hans-Peter Lenhof,et al.  Proteomic study of human glioblastoma multiforme tissue employing complementary two-dimensional liquid chromatography- and mass spectrometry-based approaches. , 2009, Journal of proteome research.

[74]  John R Yates,et al.  Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). , 2009, Journal of proteome research.

[75]  R. Schlapbach,et al.  Identification and relative quantification of membrane proteins by surface biotinylation and two‐dimensional peptide mapping , 2005, Proteomics.

[76]  V. Reisinger,et al.  Solubilization of membrane protein complexes for blue native PAGE. , 2008, Journal of proteomics.

[77]  S. Lemeer,et al.  Comparative Phosphoproteomics of Zebrafish Fyn/Yes Morpholino Knockdown Embryos*S , 2008, Molecular & Cellular Proteomics.

[78]  Frank Fischer,et al.  Toward the Complete Membrane Proteome , 2006, Molecular & Cellular Proteomics.

[79]  A. Lee,et al.  Lipid-protein interactions in biological membranes: a structural perspective. , 2003, Biochimica et biophysica acta.

[80]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[81]  Y. Fujiki,et al.  Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum , 1982, The Journal of cell biology.

[82]  Ilka Wittig,et al.  High Resolution Clear Native Electrophoresis for In-gel Functional Assays and Fluorescence Studies of Membrane Protein Complexes* , 2007, Molecular & Cellular Proteomics.

[83]  M. Baker,et al.  A combination of immobilised pH gradients improves membrane proteomics. , 2008, Journal of proteome research.

[84]  M. Dunn,et al.  Nonionic detergent phase extraction for the proteomic analysis of heart membrane proteins using label‐free LC‐MS , 2008, Proteomics.