Multi-element probabilistic collocation method in high dimensions
暂无分享,去创建一个
[1] Parviz Moin,et al. The dimension of attractors underlying periodic turbulent Poiseuille flow , 1992, Journal of Fluid Mechanics.
[2] I. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[3] Alan Genz,et al. A Package for Testing Multiple Integration Subroutines , 1987 .
[4] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[5] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[6] Bernt Øksendal,et al. Stochastic differential equations (3rd ed.): an introduction with applications , 1992 .
[7] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[8] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[9] I. Babuska,et al. Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .
[10] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[11] B. Øksendal. Stochastic Differential Equations , 1985 .
[12] Ian H. Sloan,et al. Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..
[13] M. Hegland. Adaptive sparse grids , 2003 .
[14] George Em Karniadakis,et al. Anchor Points Matter in ANOVA Decomposition , 2011 .
[15] George E. Karniadakis,et al. The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..
[16] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[17] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[18] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[19] George E. Karniadakis,et al. Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..
[20] C. Schwab,et al. Sparse high order FEM for elliptic sPDEs , 2009 .
[21] Douglas L. Kane,et al. Changes in Lena River streamflow hydrology: Human impacts versus natural variations , 2003 .
[22] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[23] Raul Tempone,et al. An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data , 2007 .
[24] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[25] Thomas A. Zang,et al. Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.
[26] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[27] Daniel M. Tartakovsky,et al. Multivariate sensitivity analysis of saturated flow through simulated highly heterogeneous groundwater aquifers , 2005, J. Comput. Phys..
[28] Henryk Wozniakowski,et al. Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..
[29] M. Griebel. Sparse Grids and Related Approximation Schemes for Higher Dimensional Problems , 2006 .
[30] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[31] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[32] Vicky L. Freedman,et al. Groundwater Data Package for Hanford Assessments , 2006 .
[33] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[34] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[35] L. Mathelin,et al. A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .
[36] H. Rabitz,et al. Efficient input-output model representations , 1999 .
[37] Kai-Tai Fang,et al. The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..
[38] P. Frauenfelder,et al. Finite elements for elliptic problems with stochastic coefficients , 2005 .
[39] S. Shreve,et al. Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.
[40] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[41] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[42] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[43] M. Kendall. Statistical Methods for Research Workers , 1937, Nature.
[44] D. Hunter. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .
[45] Leszek Plaskota. The exponent of discrepancy of sparse grids is at least 2.1933 , 2000, Adv. Comput. Math..
[46] Knut Petras,et al. On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..
[47] Lawrence Sirovich,et al. Dynamical eigenfunction decomposition of turbulent channel flow , 1991 .
[48] V. Tikhomirov. On the Representation of Continuous Functions of Several Variables as Superpositions of Continuous Functions of one Variable and Addition , 1991 .
[49] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[50] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[51] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[52] Hermann G. Matthies,et al. Numerical Methods and Smolyak Quadrature for Nonlinear Stochastic Partial Differential Equations , 2003 .
[53] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[54] W. Hoeffding. A Class of Statistics with Asymptotically Normal Distribution , 1948 .
[55] R. Ghanem. Hybrid Stochastic Finite Elements and Generalized Monte Carlo Simulation , 1998 .
[56] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[57] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..