Multi-element probabilistic collocation method in high dimensions

We combine multi-element polynomial chaos with analysis of variance (ANOVA) functional decomposition to enhance the convergence rate of polynomial chaos in high dimensions and in problems with low stochastic regularity. Specifically, we employ the multi-element probabilistic collocation method MEPCM [1] and so we refer to the new method as MEPCM-A. We investigate the dependence of the convergence of MEPCM-A on two decomposition parameters, the polynomial order @m and the effective dimension @n, with @n@?N, and N the nominal dimension. Numerical tests for multi-dimensional integration and for stochastic elliptic problems suggest that @n>=@m for monotonic convergence of the method. We also employ MEPCM-A to obtain error bars for the piezometric head at the Hanford nuclear waste site under stochastic hydraulic conductivity conditions. Finally, we compare the cost of MEPCM-A against Monte Carlo in several hundred dimensions, and we find MEPCM-A to be more efficient for up to 600 dimensions for a specific multi-dimensional integration problem involving a discontinuous function.

[1]  Parviz Moin,et al.  The dimension of attractors underlying periodic turbulent Poiseuille flow , 1992, Journal of Fluid Mechanics.

[2]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[3]  Alan Genz,et al.  A Package for Testing Multiple Integration Subroutines , 1987 .

[4]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[5]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[6]  Bernt Øksendal,et al.  Stochastic differential equations (3rd ed.): an introduction with applications , 1992 .

[7]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[8]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[9]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[10]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[11]  B. Øksendal Stochastic Differential Equations , 1985 .

[12]  Ian H. Sloan,et al.  Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..

[13]  M. Hegland Adaptive sparse grids , 2003 .

[14]  George Em Karniadakis,et al.  Anchor Points Matter in ANOVA Decomposition , 2011 .

[15]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[16]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[17]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[18]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[19]  George E. Karniadakis,et al.  Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..

[20]  C. Schwab,et al.  Sparse high order FEM for elliptic sPDEs , 2009 .

[21]  Douglas L. Kane,et al.  Changes in Lena River streamflow hydrology: Human impacts versus natural variations , 2003 .

[22]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[23]  Raul Tempone,et al.  An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data , 2007 .

[24]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[25]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[26]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[27]  Daniel M. Tartakovsky,et al.  Multivariate sensitivity analysis of saturated flow through simulated highly heterogeneous groundwater aquifers , 2005, J. Comput. Phys..

[28]  Henryk Wozniakowski,et al.  Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..

[29]  M. Griebel Sparse Grids and Related Approximation Schemes for Higher Dimensional Problems , 2006 .

[30]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[31]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[32]  Vicky L. Freedman,et al.  Groundwater Data Package for Hanford Assessments , 2006 .

[33]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[34]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[35]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .

[36]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[37]  Kai-Tai Fang,et al.  The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..

[38]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[39]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[41]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[42]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[43]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[44]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[45]  Leszek Plaskota The exponent of discrepancy of sparse grids is at least 2.1933 , 2000, Adv. Comput. Math..

[46]  Knut Petras,et al.  On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..

[47]  Lawrence Sirovich,et al.  Dynamical eigenfunction decomposition of turbulent channel flow , 1991 .

[48]  V. Tikhomirov On the Representation of Continuous Functions of Several Variables as Superpositions of Continuous Functions of one Variable and Addition , 1991 .

[49]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[50]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[51]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[52]  Hermann G. Matthies,et al.  Numerical Methods and Smolyak Quadrature for Nonlinear Stochastic Partial Differential Equations , 2003 .

[53]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[54]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[55]  R. Ghanem Hybrid Stochastic Finite Elements and Generalized Monte Carlo Simulation , 1998 .

[56]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[57]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..