Metal Selectivity of a Cd-, Co-, and Zn-Transporting P1B-type ATPase.

The P1B-ATPases, a family of transmembrane metal transporters important for transition metal homeostasis in all organisms, are subdivided into classes based on sequence conservation and metal specificity. The multifunctional P1B-4-ATPase CzcP is part of the cobalt, zinc, and cadmium resistance system from the metal-tolerant, model organism Cupriavidus metallidurans. Previous work revealed the presence of an unusual soluble metal-binding domain (MBD) at the CzcP N-terminus, but the nature, extent, and selectivity of the transmembrane metal-binding site (MBS) of CzcP have not been resolved. Using homology modeling, we show that four wholly conserved amino acids from the transmembrane (TM) domain (Met254, Ser474, Cys476, and His807) are logical candidates for the TM MBS, which may communicate with the MBD via interactions with the first TM helix. Metal-binding analyses indicate that wild-type (WT) CzcP has three MBSs, and data on N-terminally truncated (ΔMBD) CzcP suggest the presence of a single TM MBS. Electronic absorption and electron paramagnetic resonance spectroscopic analyses of ΔMBD CzcP and variant proteins thereof provide insight into the details of Co2+ coordination by the TM MBS. These spectroscopic data, combined with in vitro functional studies of WT and variant CzcP proteins, show that the side chains of Met254, Cys476, and His807 contribute to Cd2+, Co2+, and Zn2+ binding and transport, whereas the side chain of Ser474 appears to play a minimal role. By comparison to other P1B-4-ATPases, we suggest that an evolutionarily adapted flexibility in the TM region likely afforded CzcP the ability to transport Cd2+ and Zn2+ in addition to Co2+.

[1]  D. Nies The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. , 2016, Metallomics : integrated biometal science.

[2]  J. Helmann,et al.  The Listeria monocytogenes Fur‐regulated virulence protein FrvA is an Fe(II) efflux P1B4‐type ATPase , 2016, Molecular microbiology.

[3]  T. Stemmler,et al.  Fine-tuning of Substrate Affinity Leads to Alternative Roles of Mycobacterium tuberculosis Fe2+-ATPases* , 2016, The Journal of Biological Chemistry.

[4]  J. Helmann,et al.  PfeT, a P1B4‐type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication , 2015, Molecular microbiology.

[5]  P. Nissen,et al.  Structure and Function of Cu(I)- and Zn(II)-ATPases. , 2015, Biochemistry.

[6]  Aaron T. Smith,et al.  A new metal binding domain involved in cadmium, cobalt and zinc transport , 2015, Nature chemical biology.

[7]  D. Giedroc,et al.  Copper Transport and Trafficking at the Host–Bacterial Pathogen Interface , 2014, Accounts of chemical research.

[8]  D. Rees,et al.  Structure and mechanism of Zn2+-transporting P-type ATPases , 2014, Nature.

[9]  Aaron T. Smith,et al.  Diversity of the metal-transporting P1B-type ATPases , 2014, JBIC Journal of Biological Inorganic Chemistry.

[10]  C. Lim,et al.  Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. , 2014, Chemical reviews.

[11]  C. Sassetti,et al.  Differential roles for the Co2+/Ni2+ transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence , 2014, Molecular microbiology.

[12]  S. White,et al.  Copper-transporting P-type ATPases use a unique ion-release pathway , 2013, Nature Structural &Molecular Biology.

[13]  H. Apell,et al.  Mechanistic analysis of the pump cycle of the KdpFABC P-type ATPase. , 2013, Biochemistry.

[14]  A. Rosenzweig,et al.  Characterization of a cobalt-specific P(1B)-ATPase. , 2012, Biochemistry.

[15]  S. Lutsenko,et al.  Evolution of Copper Transporting ATPases in Eukaryotic Organisms , 2012, Current genomics.

[16]  J. Argüello,et al.  Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence. , 2011, Biochemistry.

[17]  P. Nissen,et al.  Crystal structure of a copper-transporting PIB-type ATPase , 2011, Nature.

[18]  M. Seeger,et al.  Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation , 2011, PloS one.

[19]  N. Rascio,et al.  Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? , 2011, Plant science : an international journal of experimental plant biology.

[20]  J. Argüello,et al.  The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function , 2011, BioMetals.

[21]  P. Nissen,et al.  The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump , 2010, Quarterly Reviews of Biophysics.

[22]  D. Giedroc,et al.  Coordination chemistry of bacterial metal transport and sensing. , 2009, Chemical reviews.

[23]  D. Nies,et al.  CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34 , 2009, Molecular microbiology.

[24]  J. Argüello,et al.  Chaperone-mediated Cu+ Delivery to Cu+ Transport ATPases , 2009, The Journal of Biological Chemistry.

[25]  C. Toyoshima,et al.  Crystal structure of the sodium–potassium pump at 2.4 Å resolution , 2009, Nature.

[26]  N. Leonhardt,et al.  AtHMA3, a P1B-ATPase Allowing Cd/Zn/Co/Pb Vacuolar Storage in Arabidopsis1[W] , 2008, Plant Physiology.

[27]  P. Nissen,et al.  Crystal structure of the plasma membrane proton pump , 2008, Nature.

[28]  P. Nissen,et al.  Crystal structure of the sodium–potassium pump , 2007, Nature.

[29]  M. Mergeay,et al.  Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans Are Specialized in the Maximal Viable Response to Heavy Metals , 2007, Journal of bacteriology.

[30]  J. Argüello,et al.  The structure and function of heavy metal transport P1B-ATPases , 2007, BioMetals.

[31]  F. Reith,et al.  Biomineralization of Gold: Biofilms on Bacterioform Gold , 2006, Science.

[32]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[33]  Ke-Wu Yang,et al.  Spectroscopic studies on cobalt(II)-substituted metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria. , 2005, Biochemistry.

[34]  David Baker,et al.  Protein structure prediction and analysis using the Robetta server , 2004, Nucleic Acids Res..

[35]  I. Bertini,et al.  Structural Basis for the Function of the N-terminal Domain of the ATPase CopA from Bacillus subtilis* , 2003, Journal of Biological Chemistry.

[36]  I. Hwang,et al.  Functional Expression of a Bacterial Heavy Metal Transporter in Arabidopsis Enhances Resistance to and Decreases Uptake of Heavy Metals1[w] , 2003, Plant Physiology.

[37]  J. Argüello Identification of Ion-Selectivity Determinants in Heavy-Metal Transport P1B-type ATPases , 2003, The Journal of Membrane Biology.

[38]  M. Nakasako,et al.  Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution , 2000, Nature.

[39]  J. Pittman,et al.  Emerging mechanisms for heavy metal transport in plants. , 2000, Biochimica et biophysica acta.

[40]  C. Rensing,et al.  The ATP Hydrolytic Activity of Purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli * , 2000, The Journal of Biological Chemistry.

[41]  D. Cox,et al.  Wilson disease and Menkes disease: new handles on heavy-metal transport. , 1994, Trends in genetics : TIG.

[42]  J. Rommens,et al.  The Wilson disease gene is a putative copper transporting P–type ATPase similar to the Menkes gene , 1993, Nature Genetics.

[43]  M. Mergeay,et al.  Construction and characterization of heavy metal-resistant haloaromatic-degrading Alcaligenes eutrophus strains , 1993, Applied and environmental microbiology.

[44]  J. Berg,et al.  Metal-dependent folding of a single zinc finger from transcription factor IIIA. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Giedroc,et al.  Zinc metalloproteins involved in replication and transcription. , 1986, Journal of inorganic biochemistry.

[46]  R. Johnson,et al.  Communication between catalytic and regulatory subunits in Ni(II)- and Co(II)-aspartate transcarbamoylase. Ligand-promoted structural alterations at the intersubunit bonding domains. , 1983, The Journal of biological chemistry.

[47]  P. A. Lanzetta,et al.  An improved assay for nanomole amounts of inorganic phosphate. , 1979, Analytical biochemistry.

[48]  B. Hoffman,et al.  THE DIOXYGEN ADDUCT OF MESO‐TETRAPHENYLPORPHYRINMANGANESE(II), A SYNTHETIC OXYGEN CARRIER , 1976 .

[49]  B. Hoffman,et al.  Tumbling of an adsorbed nitroxide using rapid adiabatic passage , 1976 .

[50]  R. Pearson HARD AND SOFT ACIDS AND BASES , 1963 .

[51]  M. Bublitz P-Type ATPases , 2016, Methods in Molecular Biology.

[52]  Mindy I. Davis,et al.  Geometric and electronic structure/function correlations in non-heme iron enzymes. , 2000, Chemical reviews.

[53]  W. Maret,et al.  Cobalt as probe and label of proteins. , 1993, Methods in enzymology.

[54]  S. Packman,et al.  Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper–transporting ATPase , 1993, Nature Genetics.

[55]  B. Hoffman,et al.  Ligand spin densities in blue copper proteins by q-band proton and nitrogen-14 ENDOR spectroscopy , 1991 .

[56]  R. Albers Biochemical aspects of active transport. , 1967, Annual review of biochemistry.

[57]  C. Rohl,et al.  PROTEINS: Structure, Function, and Bioinformatics Suppl 7:157–166 (2005) Prediction of CASP6 Structures Using Automated Robetta Protocols , 2022 .

[58]  Pierre Tufféry,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .