Time-domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives

Abstract— Kjartansson's constant-Q model is solved in the time-domain using a new modeling algorithm based on fractional derivatives. Instead of time derivatives of order 2, Kjartansson's model requires derivatives of order 2γ, with 0 <γ< 1/2, in the dilatation-stress formulation. The derivatives are computed with the Grünwald-Letnikov and central-difference approximations, which are finite-difference extensions of the standard finite-difference operators for derivatives of integer order. The modeling uses the Fourier method to compute the spatial derivatives, and therefore can handle complex geometries. A synthetic cross-well seismic experiment illustrates the capabilities of this novel modeling algorithm.

[1]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[2]  J. Prüss Evolutionary Integral Equations And Applications , 1993 .

[3]  Giuseppe Dattoli,et al.  An alternative point of view to the theory of fractional Fourier transform , 1998 .

[4]  R. L. Mills,et al.  ATTENUATION OF SHEAR AND COMPRESSIONAL WAVES IN PIERRE SHALE , 1958 .

[5]  R. Gorenflo,et al.  FRACTIONAL CALCULUS : Some Numerical Methods , 2001 .

[6]  Boris Gurevich,et al.  Velocity and attenuation of elastic waves in finely layered porous rocks , 1995 .

[7]  J. Carcione,et al.  A rheological model for anelastic anisotropic media with applications to seismic wave propagation , 1994 .

[8]  Francesco Mainardi,et al.  Seismic pulse propagation with constant Q and stable probability distributions , 1997, 1008.1341.

[9]  V. Harrison Survey of general and applied rheology , 1950 .

[10]  Fellah,et al.  Transient acoustic wave propagation in rigid porous media: a time-domain approach , 2000, The Journal of the Acoustical Society of America.

[11]  M. Carcione,et al.  Wave propagation simulation in a linear viscoacoustic medium , 1997 .

[12]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[13]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[14]  G. W. Scott-Blair A survey of general and applied rheology , 1951 .

[15]  Edip Baysal,et al.  Forward modeling by a Fourier method , 1982 .

[16]  J. Dieudonne,et al.  Encyclopedic Dictionary of Mathematics , 1979 .

[17]  M. N. Toksoz,et al.  Seismic wave attenuation , 1981 .

[18]  I. Podlubny Fractional differential equations , 1998 .

[19]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .