Optimal Control and Synchronization of Dynamic Ensemble Systems

OF THE DISSERTATION Optimal Control and Synchronization of Dynamic Ensemble Systems by Anatoly Zlotnik Doctor of Philosophy in Systems Science and Mathematics Washington University in St. Louis, August 2014 Professor Jr-Shin Li, Chair Ensemble control involves the manipulation of an uncountably infinite collection of structurally identical or similar dynamical systems, which are indexed by a parameter set, by applying a common control without using feedback. This subject is motivated by compelling problems in quantum control, sensorless robotic manipulation, and neural engineering, which involve ensembles of linear, bilinear, or nonlinear oscillating systems, for which analytical control laws are infeasible or absent. The focus of this dissertation is on novel analytical paradigms and constructive control design methods for practical ensemble control problems. The first result is a computational method for the synthesis of minimum-norm ensemble controls for time-varying linear systems. This method is extended to iterative techniques to accommodate bounds on the control amplitude, and to synthesize ensemble controls for bilinear systems. Example ensemble systems include harmonic oscillators, quantum transport, and quantum spin transfers on the Bloch system. To move towards the control of complex ensembles of nonlinear oscillators, which occur in neuroscience, circadian biology, electrochemistry, and many other fields, ideas from synchronization engineering are incorporated.

[1]  Ingo Fischer,et al.  Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication , 2000 .

[2]  Jr-Shin Li,et al.  Optimal entrainment of neural oscillator ensembles , 2012, Journal of neural engineering.

[3]  Michael Chertkov,et al.  Options for Control of Reactive Power by Distributed Photovoltaic Generators , 2010, Proceedings of the IEEE.

[4]  Jr-Shin Li Control of Inhomogeneous Ensembles , 2006 .

[5]  Jeff Moehlis,et al.  Continuation-based Computation of Global Isochrons , 2010, SIAM J. Appl. Dyn. Syst..

[6]  Moshe Sheintuch,et al.  The structure of complex behavior in anodic nickel dissolution , 1989 .

[7]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[8]  István Z Kiss,et al.  Dynamics of electrochemical oscillators with electrode size disparity: asymmetrical coupling and anomalous phase synchronization. , 2011, Physical chemistry chemical physics : PCCP.

[9]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[10]  Christian Hauptmann,et al.  Modified Pulse Shapes for Effective Neural Stimulation , 2011, Front. Neuroeng..

[11]  Shin Li,et al.  A new perspective on control of uncertain complex systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[12]  Jr-Shin Li,et al.  Ensemble Control of Finite-Dimensional Time-Varying Linear Systems , 2008, IEEE Transactions on Automatic Control.

[13]  Christian Hauptmann,et al.  Counteracting tinnitus by acoustic coordinated reset neuromodulation. , 2012, Restorative neurology and neuroscience.

[14]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[15]  G. Ermentrout n:m Phase-locking of weakly coupled oscillators , 1981 .

[16]  F. Hanson Comparative studies of firefly pacemakers. , 1978, Federation proceedings.

[17]  R. Beals Analysis: An Introduction , 2004 .

[18]  J. L. Hudson,et al.  Phase synchronization and suppression of chaos through intermittency in forcing of an electrochemical oscillator. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  R. Brockett Finite Dimensional Linear Systems , 2015 .

[20]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[21]  Michelle M. McCarthy,et al.  Striatal origin of the pathologic beta oscillations in Parkinson's disease , 2011, Proceedings of the National Academy of Sciences.

[22]  I. Kiss,et al.  Optimal waveform for fast entrainment of weakly forced nonlinear oscillators. , 2013, Physical review letters.

[23]  Ali Nabi,et al.  Single input optimal control for globally coupled neuron networks , 2011, Journal of neural engineering.

[24]  Richard A. Gray,et al.  Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli. , 2002, Chaos.

[25]  P. Stark Bounded-Variable Least-Squares: an Algorithm and Applications , 2008 .

[26]  L Glass,et al.  Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias , 1982, Journal of mathematical biology.

[27]  Jr-Shin Li,et al.  Ensemble control of linear systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[28]  Aronson,et al.  Entrainment regions for periodically forced oscillators. , 1986, Physical review. A, General physics.

[29]  Johanna H Meijer,et al.  Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. , 2012, Progress in brain research.

[30]  W. Delb,et al.  Neural Synchronization Stability in the Tinnitus Decompensation , 2005, Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005..

[31]  E. Izhikevich,et al.  Oscillatory Neurocomputers with Dynamic Connectivity , 1999 .

[32]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[33]  István Z Kiss,et al.  Predicting mutual entrainment of oscillators with experiment-based phase models. , 2005, Physical review letters.

[34]  G Bard Ermentrout,et al.  Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. , 2005, Physical review letters.

[35]  Hiroya Nakao,et al.  Optimal phase response curves for stochastic synchronization of limit-cycle oscillators by common Poisson noise. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Charles J. Wilson,et al.  Activity Patterns in a Model for the Subthalamopallidal Network of the Basal Ganglia , 2002, The Journal of Neuroscience.

[37]  W. J. Cunningham The Growth of Subharmonic Oscillations , 1951 .

[38]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[39]  H. Pinsker Aplysia bursting neurons as endogenous oscillators. I. Phase-response curves for pulsed inhibitory synaptic input. , 1977, Journal of neurophysiology.

[40]  R. Hanson A Numerical Method for Solving Fredholm Integral Equations of the First Kind Using Singular Values , 1971 .

[41]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[42]  Navin Khaneja,et al.  Composite dipolar recoupling: anisotropy compensated coherence transfer in solid-state nuclear magnetic resonance. , 2006, The Journal of chemical physics.

[43]  Bard Ermentrout,et al.  Type I Membranes, Phase Resetting Curves, and Synchrony , 1996, Neural Computation.

[44]  Brian H. Houston,et al.  Frequency entrainment for micromechanical oscillator , 2003 .

[45]  Allan Peterson,et al.  The Theory of Differential Equations: Classical and Qualitative , 2003 .

[46]  Justin Ruths,et al.  Frictionless atom cooling in harmonic traps: A time-optimal approach , 2010, 1012.1642.

[47]  A. Benabid,et al.  Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus , 1991, The Lancet.

[48]  A. Winfree The geometry of biological time , 1991 .

[49]  Jr-Shin Li,et al.  A pseudospectral method for optimal control of open quantum systems. , 2009, The Journal of chemical physics.

[50]  G. Filatrella,et al.  Analysis of a power grid using a Kuramoto-like model , 2007, 0705.1305.

[51]  J. Moehlis,et al.  On the Response of Neurons to Sinusoidal Current Stimuli: Phase Response Curves and Phase-Locking , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[52]  Michael Peter Kennedy,et al.  Estimating the locking range of analog dividers through a phase-domain macromodel , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[53]  Philip X.-L. Feng,et al.  Silicon carbide (SiC) membrane nanomechanical resonators with multiple vibrational modes , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[54]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[55]  Isabelle Peretz,et al.  Tagging the Neuronal Entrainment to Beat and Meter , 2011, The Journal of Neuroscience.

[56]  Navin Khaneja,et al.  Fourier methods for control of inhomogeneous quantum systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[57]  Frank C. Hoppensteadt,et al.  Pattern recognition via synchronization in phase-locked loop neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[58]  Adilson E. Motter,et al.  Spontaneous Reaction Silencing in Metabolic Optimization , 2008, PLoS Comput. Biol..

[59]  X.L. Chen,et al.  Deep Brain Stimulation , 2013, Interventional Neurology.

[60]  W. Govaerts,et al.  Computation of the Phase Response Curve: A Direct Numerical Approach , 2006, Neural Computation.

[61]  Vadas Gintautas,et al.  Resonant forcing of nonlinear systems of differential equations. , 2008, Chaos.

[62]  J. G. Muga,et al.  Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. , 2009, Physical review letters.

[63]  D J Kriellaars,et al.  Mechanical entrainment of fictive locomotion in the decerebrate cat. , 1994, Journal of neurophysiology.

[64]  Eric Shea-Brown,et al.  Shared Inputs, Entrainment, and Desynchrony in Elliptic Bursters: From Slow Passage to Discontinuous Circle Maps , 2010, SIAM J. Appl. Dyn. Syst..

[65]  Mazyar Mirrahimi,et al.  Controllability of quantum harmonic oscillators , 2004, IEEE Transactions on Automatic Control.

[66]  Jason T. Ritt,et al.  Control strategies for underactuated neural ensembles driven by optogenetic stimulation , 2013, Front. Neural Circuits.

[67]  B. Sanders,et al.  Quantum encodings in spin systems and harmonic oscillators , 2001, quant-ph/0109066.

[68]  John L. Hudson,et al.  Experiments on Arrays of Globally Coupled Periodic Electrochemical Oscillators , 1999 .

[69]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[70]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[71]  J. D. Hunter,et al.  Amplitude and frequency dependence of spike timing: implications for dynamic regulation. , 2003, Journal of neurophysiology.

[72]  Michael Chertkov,et al.  Synchronization in complex oscillator networks and smart grids , 2012, Proceedings of the National Academy of Sciences.

[73]  J. Byrne,et al.  Phase sensitivity and entrainment in a modeled bursting neuron. , 1997, Biophysical journal.

[74]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[75]  Peter A. Tass,et al.  A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations , 2003, Biological Cybernetics.

[76]  Shin Li,et al.  Optimal ensemble control of open quantum systems with a pseudospectral method , 2010, 49th IEEE Conference on Decision and Control (CDC).

[77]  John L. Hudson,et al.  Desynchronization and clustering with pulse stimulations of coupled electrochemical relaxation oscillators , 2010 .

[78]  P. Rosenbusch,et al.  Cold atom clocks and applications , 2005, physics/0502117.

[79]  Ronald R. Mohler Bilinear Control Processes: With Applications to Engineering, Ecology, and Medicine , 2012 .

[80]  Mirjam Münch,et al.  Evidence that the Lunar Cycle Influences Human Sleep , 2013, Current Biology.

[81]  John A. White,et al.  Beyond Two-Cell Networks: Experimental Measurement of Neuronal Responses to Multiple Synaptic Inputs , 2005, Journal of Computational Neuroscience.

[82]  Shunsuke Ohtahara,et al.  Epileptic Encephalopathies in Early Infancy With Suppression-Burst , 2003, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[83]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .

[84]  Tetsuya J. Kobayashi,et al.  Melanopsin-dependent photo-perturbation reveals desynchronization underlying the singularity of mammalian circadian clocks , 2007, Nature Cell Biology.

[85]  Hazem Eltahawy,et al.  How does DBS work? , 2004, Supplements to Clinical neurophysiology.

[86]  Andres M. Lozano,et al.  Chapter 78 How does DBS work , 2004 .

[87]  Florian Dörfler,et al.  Exploring synchronization in complex oscillator networks , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[88]  Anatoly Zlotnik,et al.  Synthesis of optimal ensemble controls for linear systems using the singular value decomposition , 2011, 2012 American Control Conference (ACC).

[89]  Huibert Kwakernaak,et al.  Robust control and H∞-optimization - Tutorial paper , 1993, Autom..

[90]  Warren M. Grill,et al.  Selection of stimulus parameters for deep brain stimulation , 2004, Clinical Neurophysiology.

[91]  M. Crisp,et al.  Adiabatic-Following Approximation , 1973 .

[92]  Kenneth Wright,et al.  Numerical solution of Fredholm integral equations of first kind , 1964, Comput. J..

[93]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.

[94]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[95]  Anatoly Zlotnik,et al.  Iterative ensemble control synthesis for bilinear systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[96]  L Chen,et al.  Synchronization with on-off coupling: Role of time scales in network dynamics. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  Heinz Schättler,et al.  Minimum-Time Frictionless Atom Cooling in Harmonic Traps , 2010, SIAM J. Control. Optim..

[98]  John Guckenheimer,et al.  Dissecting the Phase Response of a Model Bursting Neuron , 2009, SIAM J. Appl. Dyn. Syst..

[99]  Beom Jun Kim,et al.  Synchronization on small-world networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  Juan P. Torres,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[101]  John L Hudson,et al.  Emerging Coherence in a Population of Chemical Oscillators , 2002, Science.

[102]  Per Christian Hansen,et al.  Computation of the singular value expansion , 1988, Computing.

[103]  Alper Demir,et al.  A reliable and efficient procedure for oscillator PPV computation, with phase noise macromodeling applications , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[104]  Hoppensteadt,et al.  Synchronization of laser oscillators, associative memory, and optical neurocomputing , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[105]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[106]  Andreas Kupsch,et al.  Deep brain stimulation in dystonia , 2003, Journal of Neurology.

[107]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[108]  Peter A Tass,et al.  Desynchronization of coupled electrochemical oscillators with pulse stimulations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[110]  Takahiro Harada,et al.  Optimal waveform for the entrainment of a weakly forced oscillator. , 2010, Physical review letters.

[111]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[112]  R. Kronauer,et al.  Human phase response curve to a 1 h pulse of bright white light , 2012, The Journal of physiology.

[113]  Hiroshi Kori,et al.  Synchronization engineering: theoretical framework and application to dynamical clustering. , 2008, Chaos.

[114]  M. Bowman,et al.  Modern pulsed and continuous-wave electron spin resonance , 1990 .

[115]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[116]  B. Ronacher,et al.  Phase response curves elucidating the dynamics of coupled oscillators. , 2009, Methods in enzymology.

[117]  John L. Hudson,et al.  Bursting Oscillations during Metal Electrodissolution: Experiments and Model , 2003 .

[118]  A. Peressini,et al.  The Mathematics Of Nonlinear Programming , 1988 .

[119]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[120]  Jr-Shin Li,et al.  Ensemble controllability of time-invariant linear systems , 2013, 52nd IEEE Conference on Decision and Control.

[121]  John W. Norris Nonlinear Dynamical Behavior of a Moving Voice Coil , 1998 .

[122]  Qiang Shi,et al.  Stimulated Raman adiabatic passage in the presence of dephasing , 2003 .

[123]  Timothy Bretl,et al.  Approximate Steering of a Unicycle Under Bounded Model Perturbation Using Ensemble Control , 2012, IEEE Transactions on Robotics.

[124]  W. Ray,et al.  Identification and control of distributed parameter systems by means of the singular value decomposition , 1995 .

[125]  J. Pauly,et al.  Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.

[126]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[127]  Jr-Shin Li,et al.  Charge-balanced time-optimal control for spiking neuron oscillators , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[128]  Erik D. Herzog,et al.  Neurons and networks in daily rhythms , 2007, Nature Reviews Neuroscience.

[129]  Pierre Rouchon,et al.  Controllability Issues for Continuous-Spectrum Systems and Ensemble Controllability of Bloch Equations , 2009, 0903.2720.

[130]  Martin J Cryan,et al.  Active antenna phase control using subharmonic locking , 1995 .

[131]  Arye Rosen,et al.  Theory of subharmonic synchronization of nonlinear oscillators , 1989, IEEE MTT-S International Microwave Symposium Digest.

[132]  Aaron Becker,et al.  Optimal Motion Planning for Robust Sensorless Part Orientation , 2011 .

[133]  J. Sleigh,et al.  Modelling general anaesthesia as a first-order phase transition in the cortex. , 2004, Progress in biophysics and molecular biology.

[134]  Z. Gajic,et al.  The successive approximation procedure for finite-time optimal control of bilinear systems , 1994, IEEE Trans. Autom. Control..

[135]  A. Isidori,et al.  Topics in Control Theory , 2004 .

[136]  E. Izhikevich Weakly Coupled Oscillators , 2006 .

[137]  M. Roukes,et al.  A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. , 2008, Nature nanotechnology.

[138]  S. Boccaletti,et al.  On the intrinsic time scales involved in synchronization: a data-driven approach. , 2005, Chaos.

[139]  Bert van Keulen,et al.  H? Control for Distributed Parameter Systems: A State-Space Approach , 2012 .

[140]  N. Khaneja,et al.  Fourier decompositions and pulse sequence design algorithms for nuclear magnetic resonance in inhomogeneous fields. , 2006, The Journal of chemical physics.

[141]  Jr-Shin Li,et al.  Minimum-Time Quantum Transport With Bounded Trap Velocity , 2011, IEEE Transactions on Automatic Control.

[142]  R. Bellman Calculus of Variations (L. E. Elsgolc) , 1963 .

[143]  G B Ermentrout,et al.  Beyond a pacemaker's entrainment limit: phase walk-through. , 1984, The American journal of physiology.

[144]  Jr-Shin Li,et al.  Constrained charge-balanced minimum-power controls for spiking neuron oscillators , 2011, Syst. Control. Lett..

[145]  Francis J. Doyle,et al.  Circadian Phase Resetting via Single and Multiple Control Targets , 2008, PLoS Comput. Biol..

[146]  Haruhiko Murase,et al.  Controlling Circadian Rhythms by Dark-Pulse Perturbations in Arabidopsis thaliana , 2013, Scientific Reports.

[147]  Hanspeter Herzel,et al.  Entrainment in a Model of the Mammalian Circadian Oscillator , 2005, Journal of biological rhythms.

[148]  Udo Will,et al.  The concept of entrainment and its significance for ethnomusicology , 2004 .

[149]  E. Large Modeling Beat Perception with a Nonlinear Oscillator , .

[150]  Daniel R. Merrill,et al.  Electrical stimulation of excitable tissue: design of efficacious and safe protocols , 2005, Journal of Neuroscience Methods.

[151]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[152]  David Paydarfar,et al.  Starting, stopping, and resetting biological oscillators: in search of optimum perturbations. , 2004, Journal of theoretical biology.

[153]  Hanspeter Herzel,et al.  How to Achieve Fast Entrainment? The Timescale to Synchronization , 2009, PloS one.

[154]  Roland E. Best Phase-locked loops : design, simulation, and applications , 2003 .

[155]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[156]  Richard H. Rand,et al.  Subharmonic entrainment of a forced relaxation oscillator , 1988 .

[157]  B. Silbermann,et al.  Numerical Analysis for Integral and Related Operator Equations , 1991 .

[158]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[159]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[160]  P. McClintock Phase resetting in medicine and biology , 2008 .

[161]  Ali Nabi,et al.  CHARGE-BALANCED SPIKE TIMING CONTROL FOR PHASE MODELS OF SPIKING NEURONS , 2010 .

[162]  Daniel B. Forger,et al.  Optimal Schedules of Light Exposure for Rapidly Correcting Circadian Misalignment , 2014, PLoS Comput. Biol..

[163]  S. Schiff,et al.  Adaptive Electric Field Control of Epileptic Seizures , 2000, The Journal of Neuroscience.

[164]  J Gómez-Gardeñes,et al.  Emerging meso- and macroscales from synchronization of adaptive networks. , 2011, Physical review letters.

[165]  Matthias Wacker,et al.  On the Stability of the n:m Phase Synchronization Index , 2011, IEEE Transactions on Biomedical Engineering.

[166]  Leonidas D. Iasemidis,et al.  Control of Synchronization of Brain Dynamics leads to Control of Epileptic Seizures in Rodents , 2009, Int. J. Neural Syst..

[167]  C. Vogel Optimal choice of a truncation level for the truncated SVD solution of linear first kind integral equations when data are noisy , 1986 .

[168]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[169]  Julia Kluge,et al.  Emergence Of Dynamical Order Synchronization Phenomena In Complex Systems , 2016 .

[170]  B. Tibken,et al.  An iterative method for the finite-time bilinear-quadratic control problem , 1988 .

[171]  Mark A Kramer,et al.  Distributed control in a mean-field cortical network model: implications for seizure suppression. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[172]  Satoshi Nakata,et al.  Arnold tongue of electrochemical nonlinear oscillators. , 2009, The journal of physical chemistry. A.

[173]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[174]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[175]  Denis Efimov,et al.  Phase Resetting Control Based On Direct Phase Response Curve , 2010 .

[176]  J. Coron Control and Nonlinearity , 2007 .

[177]  N. Khaneja,et al.  Control of inhomogeneous quantum ensembles , 2006 .

[178]  M. Fujishima,et al.  4.8GHz CMOS frequency multiplier with subharmonic pulse-injection locking , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[179]  Karl Heinz Hoffmann,et al.  Maximum work in minimum time from a conservative quantum system. , 2009, Physical chemistry chemical physics : PCCP.

[180]  Björn Kralemann,et al.  Phase dynamics of coupled oscillators reconstructed from data. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[181]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[182]  John Yianni,et al.  Deep Brain Stimulation for Dystonia , 2004, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[183]  Jr-Shin Li,et al.  Optimal Asymptotic Entrainment of Phase-Reduced Oscillators , 2011, ArXiv.

[184]  Jr-Shin Li,et al.  Optimal design of minimum-power stimuli for phase models of neuron oscillators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[185]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[186]  Denis V. Efimov,et al.  Controlling the phase of an oscillator: A phase response curve approach , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[187]  E. Izhikevich,et al.  Weakly connected neural networks , 1997 .

[188]  Israel Gohberg,et al.  Basic Classes of Linear Operators , 2004 .

[189]  W. Ketterle,et al.  Cooling Bose-Einstein Condensates Below 500 Picokelvin , 2003, Science.

[190]  T. Aprille,et al.  A computer algorithm to determine the steady-state response of nonlinear oscillators , 1972 .

[191]  Jr-Shin Li,et al.  Constrained minimum-power control of spiking neuron oscillators , 2011, IEEE Conference on Decision and Control and European Control Conference.

[192]  Ali Nabi,et al.  Charge-Balanced Optimal Inputs for Phase Models of Spiking Neurons , 2009 .

[193]  Jr-Shin Li,et al.  Optimal ensemble control of stochastic time-varying linear systems , 2013, Syst. Control. Lett..

[194]  Pierre Gaspard,et al.  Fluctuation theorem and mesoscopic chemical clocks. , 2008, The Journal of chemical physics.

[195]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[196]  Hiroshi Kori,et al.  Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization , 2007, Science.

[197]  P. Ashwin,et al.  The dynamics ofn weakly coupled identical oscillators , 1992 .

[198]  P. Olver Nonlinear Systems , 2013 .

[199]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[200]  J. Kurths,et al.  Heartbeat synchronized with ventilation , 1998, Nature.

[201]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[202]  Ghanim Ullah,et al.  Tracking and control of neuronal Hodgkin-Huxley dynamics. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[203]  Moshe Sheintuch,et al.  Modeling periodic and chaotic dynamics in anodic nickel dissolution , 1992 .

[204]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[205]  Robert J Butera,et al.  Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. , 2005, Physical review letters.

[206]  Jonathan E. Rubin,et al.  High Frequency Stimulation of the Subthalamic Nucleus Eliminates Pathological Thalamic Rhythmicity in a Computational Model , 2004, Journal of Computational Neuroscience.

[207]  Eric T. Shea-Brown,et al.  Optimal Inputs for Phase Models of Spiking Neurons , 2006 .

[208]  Y. Zur,et al.  Design of adiabatic selective pulses using optimal control theory , 1996, Magnetic resonance in medicine.

[209]  C. Colwell,et al.  Jet lag syndrome: circadian organization, pathophysiology, and management strategies , 2010, Nature and science of sleep.

[210]  W. Hackbusch Integral Equations: Theory and Numerical Treatment , 1995 .

[211]  Giuseppe Marino,et al.  IMPLICIT AND EXPLICIT ALGORITHMS FOR MINIMUM-NORM FIXED POINTS OF PSEUDOCONTRACTIONS IN HILBERT SPACES , 2012 .

[212]  Hiroshi Kori,et al.  A Framework for Engineering the Collective Behavior of Complex Rhythmic Systems. , 2009, Industrial & engineering chemistry research.

[213]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[214]  Jr-Shin Li,et al.  Optimal pulse design in quantum control: A unified computational method , 2011, Proceedings of the National Academy of Sciences.

[215]  Hiroshi Kori,et al.  Characterization of synchronization in interacting groups of oscillators: application to seizures. , 2008, Biophysical journal.

[216]  Richard E. Kronauer,et al.  Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light , 2010, Science Translational Medicine.

[217]  Hideo Mabuchi,et al.  Principles and applications of control in quantum systems , 2005 .

[218]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[219]  P. Hansen Numerical tools for analysis and solution of Fredholm integral equations of the first kind , 1992 .

[220]  Tatyana Polenova,et al.  Protein NMR spectroscopy: spinning into focus. , 2011, Nature chemistry.

[221]  Isao T Tokuda,et al.  Inferring phase equations from multivariate time series. , 2007, Physical review letters.

[222]  Burkhard Luy,et al.  Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset. , 2005, Journal of magnetic resonance.

[223]  Jr-Shin Li,et al.  Ensemble Control of Bloch Equations , 2009, IEEE Transactions on Automatic Control.

[224]  Till Roenneberg,et al.  Human Responses to the Geophysical Daily, Annual and Lunar Cycles , 2008, Current Biology.

[225]  E. Nyström Über Die Praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben , 1930 .

[226]  Nicholas T. Carnevale,et al.  Simulation of networks of spiking neurons: A review of tools and strategies , 2006, Journal of Computational Neuroscience.

[227]  Thilo Gross,et al.  Adaptive coevolutionary networks: a review , 2007, Journal of The Royal Society Interface.

[228]  Justin Ruths,et al.  Convergence of a pseudospectral method for optimal control of complex dynamical systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[229]  J. L. Hudson,et al.  Synchronization engineering: tuning the phase relationship between dissimilar oscillators using nonlinear feedback , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[230]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[231]  Fernando Bolaños,et al.  Measurement and Analysis of Subharmonics and Other Distortions in Compression Drivers , 2005 .

[232]  M. Shapiro,et al.  Laser control of molecular processes. , 1992, Annual review of physical chemistry.